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PART—A

1. The series

is

(a) not convergent

(b) convergent but not absolutely convergent
(c) absolutely convergent

(d) absolutely convergent but not convergent

2. The maximum value of f(x)= xM* defined on (0, =) is attained at

@ x=1
b) x= e?
¢ x=e
(d x=1/e
3. Let aj, ag, -, G, - De @ sequence of positive real numbers such that

Yan
n=1
converges. Which of the following necessarily holds?

(a) Zan converges
n=1

co a .
(b) 3 —- converges
n
n=1

() Y.na, converges
n=1

(d) None of the above
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7.

/14-A

The function
x, when x is rational

fla = —x, when x is irrational

>

satisfies that

(@) it is discontinuous at every point
(b) it is continuous at every point
(c) it is continuous only at x =0

(d) it is discontinuous only at x =0

The inverse of the element 5 in the group U ={xeZg:(x, 8 =1 is

(@ 1 (b) 2

© S (@) 7

The order of the permutation (1 12 8 10 4)(2 13)(5 11 7)(6 9)e S5 is

(@ 30 (b) 15

(¢ 10 (d) 5

If H=(x) and o(x) = 10, then the number of generators of H is

(@ 1 (b) 2

(g 4 (d 8




8. LetG= 7Z under usual addition and H = Z,, under addition modulo n be two groups. Let
f:G— H be defined by f(x)=X Vx€Z. Then

(a) f is a homomorphism, one-one but not onto
(b) f is an isomorphism
(¢} f is a homomorphism, onto but not one-one

(d) f is not a homomorphism
9, The general solution of the differential equation
is
(a) x?+ y2 =c
(b) (y-d*+x*-9=0
¢ x+y=0
@ (y-dy®-x*-9=0

10. The general solution of the linear differential equation

3 2
a7y y+——d y+4@+4y=0
dx3  dx? dx

is

(@) ce™* +cycos(dx)
(b) cje™™ +cysin(x) +czcos(x)
(€) ce™* +cqgsin(2x) +c3cos(2x)

(d) ce* +cysin(3x) +c3cos(3x)
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11. The general solution of the partial differential equation

(x2 = y2 —22)% +2xya—z =2xz
ox oy
is given by
{a) x2 4 y2 +22 = zf (gJ
z

b) x2+y> =zf[2)
{c) x2+ y2 +z2 =f(§)

@ 22=7(Y

12. The solution of the partial differential equation

2
%(9-5 +1j+b-22Z=0
dx\\ dy oy
is
(@ 2)alz-b-1l=x+ay+b
b) 2yJalz-b-l=x-ay+b
(c) 2z=x+ay+b

(d 2Jz+b=x-y+b

13. For an equation like x2 =0, a root exists at x = 0. The bisection method cannot be
adopted to solve this equation in spite of the root existing at x = 0, because the function

fl = x?

(a) is a polynomial

(b) has repeated roots at x =0
(¢} is always non-negative

(d) has a slope equal to zero at x =0
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14. The unique solution for the system of linear equations

2 30 0][x] [1
2 4 1 Of|lxq]| |2
026 Allxz| |4
0 0 4 Bl|lx4] |O

would not exist, if

@) A-B=0
() A+B=0
) A+2B=0

(d) 24+B=0

15. The two-segment trapezoidal rule of integration is exact for integrating polynomials of
what degree?

(a) First
(b) Second
(c) Third
(d) Fourth
16. The line % = g =§ and the plane 2x - 4y+2z = 3 meet in

{a) no point
(b) only one point
(c) finitely many points

(d) infinitely many points
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1‘7. The direction cosines of x-axis are

(@ (O, 0, 1)
) (1, O, 0)
(g (O, 1, 0)
@ 1,1

18. The maximum value of the directional derivative of ¢ = x2 yz at the point (1, 4, 1) is

(@) 81 (b) 9

© 3 (d ©

19. For any closed surface S, the value of Ifscurl I—; -A ds is
(a) unity
{b) wvariable
(c) zero

(d) Any of the above

20. If M and N are continuous functions of x and y in the region R with boundary C, then
Green’s theorem in the plane states that the value of fC(de+ Ndy) is

dM ON
@) HR(Q - a—y) dxdy
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21. A ball is thrown at an angle of 45° from the horizontal with a speed of
Vy=9-8142m s”!. Then the maximum height it attains is

(a) 9-81 metres

(b) 4-905 metres
{c) 14.72 metres
(d) 19.62 metres

1

22, A2-0x 103 kg car travels at a constant speed 0of 12-0m s~ around a circular curve of

radius 30-0 metres. The magnitude of the centripetal acceleration of the car as it goes
around the curve is

() 0-40ms2

b) 4-8ms 2

{cj 800m s2

(d) 9600 m s2

23. A small block slides from rest from the top of a frictionless sphere of radius R. How far
below the top x does it lose contact with the sphere?

(@) R/2
b) R/3
) R/4
(d) 3R/4
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24, Which of the following statements is correct?
(a) Every LPP has at least one optimal solution
(b) Every LPP has a unique optimal solution
(c) If an LPP has two optimal solutions, then it has infinitely many solutions

(d} None of the above

25, Which of the following sets is not convex?

() {toy:x+ys1y
b) {6 y:x?+y?<y)
(© {(xy:x+y=1}

@ {6 y:xZ+y®21

26. The maximum value of f =4x+ 3y, subject to constraints x 20, y=2 0, 2x+3y<18§,
x+y=>10, is

(@ 35
(b) 36
(c) 34

(d) None of the above

27. The number of telephone calls arriving at a switchboard during any 10-minute period is
known to be a Poisson random variable X with A =2. Then the probability that more
than 3 calls will arrive during any 10-minute period is

(@) 0135
(b) 0143
() 0159
(d) 0174
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28.

29.

30.

/14-A

A random variable R has probability density fp(x) = ke')‘x, A >0, — < x < o, where k

is a constant. Then the variance of R is given by

(@) O

(b) 2/A
© 2/2?
) 4/22

A system consisting of n separate components is first placed in series composition and
then in parallel way. Assume that the components fail independently and the
probability of failure of component iis p;, i=1 2, n. The probability for both the
series and parallel compositions of systems works respectively is

@ (1-ppd-pa)-(-pp) 1=P1P2 Pn
() (1-p)(-pa)-(1-Pp) P1P2"Pn
(¢ 1-p1p2Pn 1-(1- py)(1- po)--(1- pn)

d 1-(1-p)(l=pg)-(1-pn) P1P2" Pn

Let R, and R, be independent. Assume that R} has the binomial distribution with
parameters n and p, and R, has the binomial distribution with parameters m and p.
Then the probability of the event is

n m
Cr-j  Cj

k n m
> "G TGk
i=0

()

n m
(b) _EJ__CEJ
m+
n Ck

n m
Ci "Ck-j k
© —mrng P
Ck

(d
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31.

32,

33.

34.

/14-A

PART—B

The range and kernel of T: R3 — R3 defined by T(x y, 2} =(x+z x+y+2z 2x + y+ 3z),

where R, Im(T) and ker(7T) denote the set of real numbers, range and kernel of T
respectively are

@ ImT)={x(L 0 D+y(0 L ):x yeR}, ker(N={a(, L -Y:aeR}

(b)) Im(T)={x(L 0 -)+y(0 L ):x yeR}, ker(N={a(-1 L, -): e R}
() ImM={x(, 0 N+y(0 -1, -1:x yeR}, ker(N=1{(L L -1:aeR}
(d) Im{@)={x(-1 0 -H+y0 L ):x yeR}, ker(M={a(L L, ~1):aeR}

Let S, and K, ‘be vector spaces of symmetric and skew-symmetric matrices of order
nxn over the field of real numbers. Then

+1 -1
(a} dimension of S, = nir ), dimension of K,, = n(nQ )
nin-1 _nn+]

(b) dimension of S, = , dimension of K, =

(c) dimension of S,, = n(n+ 1), dimension of K, =n{n-1
(d) dimension of S,, =n(n-1), dimension of K,=nn+1

Consider the system of linear equations x +2y+2z=4, 2x+y+2z=5 x-y+z=1
Then it has

(&) a unique solution at x=1, y=1 z=1
(b) only two solutions (x=1 y=1, z= )and (x=2 y=1 z=0)
{c) infinite number of solutions

{d) no solution

The characteristic equation of a (83x3) matrix P is defined as
Al — Pl= AMiea2ions1= 0. If I denotes the identity matrix, then the inverse of P will

be

(a) (P%+P+2])
(b) (P2+P+])
© -(P2+pP+])

(d) -(P2+P+2]

12
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35. Let A be a (2x2) matrix with elements ay; =-1 ajg =ag) =agy =1 Then the
eigenvalues of the matrix Al? are

(a) 1024 and -1024
(b) 102442 and -1024+2
(©) 442 and -4+2

(d) 51242 and -512+2

36. f(2) =% ze C satisfies which of the following?
(a) It is analytic everywhere
(b) It is analytic everywhere except at z = 0
(c) It is analytic nowhere except at z= 0

(d) It is analytic nowhere

37. The function

z-—-8sinz 2%0
f@= 23 i
0 , 2=0

has

(a) a removable singularity at z = 0
(b) a pole of order 2 at z=0

(c) a simple pole at z=0

(d) an essential singularity at z=0

38. Let C={z:|z|= %}. Then the value of the integral

J- z2+Sz+2
Clz-)(z-2z-3

is
(@) 4mni (b) 6mi

(c) 8mi (d) 10mi
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39. Let Cbe the circle centered at origin and with radius 1. Then the value of the integral

eZ
.[cz_sdz
is
(@) e™ (b) mi
(© -mi (d) e ™

40. If f{z = 4z3 - 3iz% +iz- 9, then f(2) satisfies which of the following?

(a) It has no zeros in |z|< 1
(b) It has only one zero in |z|<2
{c) It has only two zeros in |z|< 3

(d) It has all the zeros in [z|> 3

41. Let f:[0, = R be a function such that

0, when xis rational

fl) =

1, when xis irrational

Which of the following is true?

(a) fis Riemann integrable over [0, 1]

(b) fis Lebesgue integrable over [0, 1]

(c) fis both Riemann as well as Lebesgue integrable over [0, 1]

(d) fis neither Riemann nor Lebesgue integrable over [0, 1]

42. Let X be the set of all irrational numbers with discrete metric. Then which of the
following is true?

(a) X is complete
(b) X is compact
(c) X is connected

{d) X is bounded
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43. Which of the following is not a metric on R?
(@) dix, ¥ =min{l |x-yl}
(b)) dx y=|x-yl/l1+x-yl
(©) dlx, y=sin|x-yl

d) dix y=lx-yl

44. The number of fixed points of the mapping T: (0, I} = (G, 1) defined by T(x} = 1 is
x
(@ O (b} 1

(@ 2 (d) 4

45. The dual space of ¢ s

(@) <1 B 22

@ 23 @ =

46. Consider the set X={0, 1, 2 3, 4, 5 6 7}under addition and multiplication modulo 8,
then : '

(a) X is an integral domain
(b) X is a field
() X is a commutative ring

(d) X is a non-commutative ring

47. The polynomial f(x)= 2x2 +4 is
(a) irreducible over Q
(b) reducible over Z
() reducible over R

(d) irreducible over C
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48.

49.

50.

S1.

/14-A

The splitting field of the polynomial x% +4 over Q is

@ Q2 (b) Q

© Q@ @ Q (2, i)

Let G be a group of order p2, where p is a prime. Then

(a) G is non-Abelian
(b) G is Abelian
{c) G is cyclic

(d) G is non-cyclic

Let G be a group of order 21. Then which is not correct?
(8} @G has a Sylow 7 subgroup

(b) Sylow 7 subgroup of G is normal

(c) G has 3 Sylow 3 subgroups

(d) G has 1 or 7 Sylow 3 subgroups

The solution of the first-order ordinary differential equation

d - o
Y_eX Y 4 x2e7Y

is

(@) e7Y =e—x+—xz—+c

b) e¥=e*-Z 4c
3

() e¥Y=e"

16




———

52.

54.

/14-A

The solutlon of the d1fferent1al equation gy 4 _
yz zx

(a) x2 —y2 =y, x2 - z2 =Cq
(b) x2 +y2 = ¢y, x2 +22 =cq
() x-y=¢, x-2=¢

(d) x3-y3 =, x2 422 = Co

The necessary condition for integrability of the differential equation

dz
is

Xy

P(x, y Z)dx+0(x y 2dy+Rlx y 2dz=0

is

@ P(ao aR)+Q aR oP +R(a_P+aQ)

=0
ax az oy dx

by ©Q a—Q——E)—}g +R(%—§B)+P(QI—J—-6Q 0
0z y dx 0z Jdy ox
o P[22 ), (IR ), 3 20
dz Oy ox 9z dy ox
d P 9Q _OR +Q(a_13 BP)+R 9P _9Q =0
dy 9z 0z dy dx
For the differential equation
d? y, 7(x+ldy 3 y::O
dx2 2x dx 2x?
the point x = 0 is a/an
(a) regular singular point
(b) irregular singular point
(c) fixed point
(d) saddle point
17
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55.

56.

57.

58.
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The orthogonal trajectories of the family y2 =4a(x+a) are the family

(a) x2 =4aly+aq)
b) y2=4a(x+aq
© y?=ax+a

@) y=4ax?+a)

In the third quadrant of the xyplane, the characteristic of the differential equation
(L Vxy) e + 21+ Y= xy gy, +(1-Jxm)uy, +x%u, +y2uy =0

is

(a) real and positive

(b) real and negative

(c) identical

(d) complex conjugates

The elementary solution of the Laplace equation u,, tuyy, = Ois

(@ ulx, y; & =[x-§2-(y-n?l/Cn
(b) ulx, y; &n)=[(x-8+(y-n)]/Cn)

(© ulx, y; &) = [exp* S sin(y-n)] /@n)

@ ulx y; &) =llogy(x-82 +(y-n2]/Cn

The space form of a wave equation uy =u, +u under the substitution

. by
ulx, y ) =v(x y)eilkt, where k is a constant, reduces to an equation of

(a} elliptic type
{(b) parabolic type
(c) hyperbolic type

(d) Nomne of the above

18
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59.

60.

/14-A

The integral representation of the solution of the initial value problem

2
a—i=?ﬂ, —w< X <o t>0
ax2 ot
ufx, )=x , —c<x<co
is given by
L ~(x-8?
@ ulx t)=m—_[oe 4ut  dE
Lo e -g?
b) ulx t)—m Ie 4t dg
o —lx-t?
, t qut d
© ubk = j Ee 3
o iX— E,I
d L t vt d
@ ulx = J&e g

If wW(x, s) represents Laplace transform of u(x, t), then the initial value problem

2 2
3—22=—§—12i, —m<x<oo, t>0
t X
u(x, 0)=0 Eu(axt’ 9 = sin(nx)
transforms to
9
(@) j.xl; + 527 = sin(nx)
o_ .
(b) Z.x; -s%u= —sin(nx)
2
() -d—;i +su =sin(nx)
dx
d’u
(d) 2 - st = —sin(nx)
19
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61. Newton’s method for finding the positive square root of R> 0 is

(a) xixl-_l + R

xi + xi_l

1 R
(b) E(xi+1 +;]

© %(xi+j§J

62. The spectral radius of the matrix

0 1/3 1/4
-1/3 0 1/2
~1/4 -1/2 0 |

is

(@) 5/6
(b) 7/12
() 3/4
@ 1/3

63. The truncation error in quadratic interpolation in an equidistant table is bounded by

2

. h vt
@ gzmaxlf” @l
h2
(0) —=max|f @]

2
© Zomaxir)

h?
(d) Emale ]l
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64.

65.

66.
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A scientist uses the one-point Gauss quadrature rule based on getting exact results of
integration for functions f(x)=1 and x. The one-point Gauss quadrature rule

b
approximation for Ia f(x)dx is

@ 22 (fa+ S

B b-ar(22)

d ®-af@

For a definite integral of any third-order polynomial, the two-point Gauss quadrature
rule will give the same results as the

(a) 1-segment trapezoidal rule
(b) 2-segment trapezoidal rule
(c) 3-segment trapezoidal rule

(d) Simpson’s 1/3rd rule

The total number of generalized coordinates of a system of two particles moving on the
surface of a sphere x2+ y2 +2z2 =100 is

(@) 1
b) 2
© 3
@ 4
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67.

68.

69.

70.
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If p and g are the generalized momentum and coordinate of a Hamiltonian system

described by H =% ( p2 - q2), the equation of motion is given by

(@)

(b)

©

(d)

2
jd_q.-piq-{-qzo
dt2 dt
d%q __
P
dt2 dt

2
d_Q.-}.q:O
dt?

The canonical transformation of coordinates gand p in two-dimensional phase space is
given by §=qg-p, p=q+ p. Then the corresponding Hamiltonian transformation is

given by

(a) H=2H
(b) H=H

(¢ H=-2H
() H=-H

The extremal of the integral Ig/2(y'2 - y"?)dx, y(0)=0 and y(%): lis

(a)
(b)
(©)
(d)

sinx +cosx

sinx —CcosXx

sinx

Ccos X

The path that minimizes the arc length of the curve between (xg, yo) = (0, 0) and
(xp, ) =0 1) is

(@)

()

Yyl =x () ylo) = x>
ylo = x3 () ylo=x*
* % ik
22




