

Centre of Examination : _____

Roll No. :

Name of Candidate : _____

SAU

Entrance Test for Ph.D. (Applied Mathematics)

[2013]

Time : 3 hours

Maximum Marks : 70

INSTRUCTIONS FOR CANDIDATES

Candidates must carefully read the following instructions before attempting the Question Paper :

- (i) Write your Name and Roll Number in the space provided for the purpose on the top of this Question Paper and in the OMR/Answer Sheet.
- (ii) This Question Paper has Two Parts : Part-A and Part-B.
- (iii) Part—A has 30 questions (Objective-type) of **1** mark each. All questions are compulsory.
- (iv) Part-B has 40 questions (Objective-type) of **1** mark each. All questions are compulsory.
- (v) Symbols have their usual meanings.
- (vi) Please darken the appropriate Circle of 'Question Paper Series Code' on the OMR/Answer Sheet in the space provided.
- (vii) Questions for both the Parts should be answered on OMR/Answer Sheet.
- (viii) Answers written by the candidates inside the <u>Question Paper</u> will **NOT** be evaluated.
- (ix) Calculators and Log Tables may be used.
- (x) Pages at the end have been provided for Rough Work.
- (xi) **Return the Question Paper and the OMR/Answer Sheet** to the Invigilator at the end of the Entrance Test.
- (xii) DO NOT FOLD THE OMR/ANSWER SHEET.

/14-A

INSTRUCTIONS FOR MARKING ANSWERS IN THE 'OMR SHEET'

- 1. Please ensure that you have darkened the appropriate Circle of 'Question Paper Series Code' on the OMR Sheet in the space provided.
- 2. Use only Blue/Black Ballpoint Pen to darken the Circle. Do not use Pencil to darken the Circle for Final Answer.
- 3. Please darken the whole Circle.
- 4. Darken ONLY ONE CIRCLE for each question as shown below in the example.

Example :

- 5. Once marked, no change in the answer is allowed.
- 6. Please do not make any stray marks on the OMR Sheet.
- 7. Please do not do any rough work on the OMR Sheet.
- 8. Mark your answer only in the appropriate Circle against the number corresponding to the question.
- 9. There will be no negative marking in evaluation.

-10 21 g

1. The ser	ies
------------	-----

 $1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} + \frac{1}{10} - \frac{1}{11} + \cdots$

is

- (a) not convergent
- (b) convergent but not absolutely convergent
- (c) absolutely convergent
- (d) absolutely convergent but not convergent

2. The maximum value of $f(x) = x^{1/x}$ defined on $(0, \infty)$ is attained at

- (a) x = 1
- (b) $x = e^2$
- (c) x = e
- (d) x = 1/e
- **3.** Let $a_1, a_2, \dots, a_n, \dots$ be a sequence of positive real numbers such that

 $\sum_{n=1}^{\infty} a_n^2$

converges. Which of the following necessarily holds?

(a)
$$\sum_{n=1}^{\infty} a_n$$
 converges
(b) $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges

(c)
$$\sum_{n=1}^{\infty} n a_n$$
 converges

(d) None of the above

/14-**A**

4. The function

$f(x) = \begin{vmatrix} x, & \text{when } x \text{ is rational} \\ -x, & \text{when } x \text{ is irrational} \end{vmatrix}$

satisfies that

(a) it is discontinuous at every point

(b) it is continuous at every point

- (c) it is continuous only at x = 0
- (d) it is discontinuous only at x = 0

5. The inverse of the element 5 in the group $U(8) = \{x \in \mathbb{Z}_8 : (x, 8) = 1\}$ is

(a)	1	(b)	2
(c)	5	(d)	7

6. The order of the permutation (1 12 8 10 4)(2 13)(5 11 7)(6 9) $\in S_{13}$ is

(a) 30 (b) 15 (c) 10 (d) 5

7. If $H = \langle x \rangle$ and o(x) = 10, then the number of generators of H is

(a) 1 (b) 2 (c) 4 (d) 8

/14-**A**

4

- 8. Let $G = \mathbb{Z}$ under usual addition and $H = \mathbb{Z}_n$ under addition modulo *n* be two groups. Let $f: G \to H$ be defined by $f(x) = \overline{x} \forall x \in \mathbb{Z}$. Then
 - (a) f is a homomorphism, one-one but not onto
 - (b) f is an isomorphism
 - (c) f is a homomorphism, onto but not one-one
 - (d) f is not a homomorphism

9. The general solution of the differential equation

$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$

is

- (a) $x^2 + y^2 = c$
- (b) $(xy-c)(y^2+x^2-c)=0$
- (c) x + y = 0
- (d) $(xy-c)(y^2-x^2-c)=0$

10. The general solution of the linear differential equation

$$\frac{d^{3}y}{dx^{3}} + \frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + 4y = 0$$

1	s	

- (a) $c_1 e^{-x} + c_2 \cos(4x)$
- (b) $c_1 e^{-x} + c_2 \sin(x) + c_3 \cos(x)$
- (c) $c_1 e^{-x} + c_2 \sin(2x) + c_3 \cos(2x)$
- (d) $c_1 e^x + c_2 \sin(3x) + c_3 \cos(3x)$

/14-**A**

11. The general solution of the partial differential equation

$$(x^{2} - y^{2} - z^{2})\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} = 2xz$$

is given by

(a) $x^{2} + y^{2} + z^{2} = zf\left(\frac{y}{z}\right)$ (b) $x^{2} + y^{2} = zf\left(\frac{y}{z}\right)$ (c) $x^{2} + y^{2} + z^{2} = f\left(\frac{y}{z}\right)$ (d) $z^{2} = f\left(\frac{y}{z}\right)$

12. The solution of the partial differential equation

$$\frac{\partial z}{\partial x} \left(\left(\frac{\partial z}{\partial y} \right)^2 + 1 \right) + (b - z) \frac{\partial z}{\partial y} = 0$$

is

(a) $2\sqrt{a(z-b)-1} = x + ay + b$

(b)
$$2\sqrt{a(z-b)-1} = x - ay + b$$

(c)
$$2z = x + ay + b$$

- (d) $2\sqrt{z+b} = x-y+b$
- 13. For an equation like $x^2 = 0$, a root exists at x = 0. The bisection method cannot be adopted to solve this equation in spite of the root existing at x = 0, because the function $f(x) = x^2$
 - (a) is a polynomial
 - (b) has repeated roots at x = 0
 - (c) is always non-negative
 - (d) has a slope equal to zero at x = 0

/14-A

14. The unique solution for the system of linear equations

[2	3	0	0]	$\begin{bmatrix} x_1 \end{bmatrix}$	1	[1]	
2	4	1	0	$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$		2	
0	2	6	A	$\begin{array}{c} x_2 \\ x_3 \end{array}$	=	4	
0	0	4	B	x4.		0	

would not exist, if

- (a) A-B=0
- (b) A + B = 0
- (c) A + 2B = 0
- (d) 2A + B = 0
- **15.** The two-segment trapezoidal rule of integration is exact for integrating polynomials of what degree?
 - (a) First
 - (b) Second
 - (c) Third
 - (d) Fourth

16. The line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and the plane 2x - 4y + 2z = 3 meet in

- (a) no point
- (b) only one point
- (c) finitely many points
- (d) infinitely many points

/14-A

17. The direction cosines of x-axis are

- (a) (0, 0, 1)
- (b) (1, 0, 0)
- (0, 1, 0) (c)
- (d) (0, 1, 1)

The maximum value of the directional derivative of $\phi = x^2 yz$ at the point (1, 4, 1) is 18.

(d) 0

- (a) 81 (b) 9 (c) 3
- For any closed surface S, the value of $\iint_S \operatorname{curl} \vec{F} \cdot \hat{n} \, ds$ is 19.
 - (a) unity
 - (b) variable
 - (c) zero
 - Any of the above (d)
- 20. If M and N are continuous functions of x and y in the region R with boundary C, then Green's theorem in the plane states that the value of $\oint_C (Mdx + Ndy)$ is
 - (a) $\iint_R \left(\frac{\partial M}{\partial x} \frac{\partial N}{\partial y}\right) dx dy$
 - (b) $\iint_{R} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right) dx dy$
 - (c) $\iint_R \left(\frac{\partial N}{\partial y} \frac{\partial M}{\partial x}\right) dx dy$
 - (d) $\iint_R \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}\right) dx dy$

/14-A

- **21.** A ball is thrown at an angle of 45° from the horizontal with a speed of $V_A = 9.81\sqrt{2} \text{ m s}^{-1}$. Then the maximum height it attains is
 - (a) 9.81 metres
 - (b) 4 · 905 metres
 - (c) 14 · 72 metres
 - (d) 19.62 metres
- 22. $A 2 \cdot 0 \times 10^3$ kg car travels at a constant speed of $12 \cdot 0$ m s⁻¹ around a circular curve of radius 30.0 metres. The magnitude of the centripetal acceleration of the car as it goes around the curve is
 - (a) 0.40 m s^{-2}
 - (b) $4 \cdot 8 \text{ m s}^{-2}$
 - (c) 800 m s^{-2}
 - (d) 9600 m s⁻²
- 23. A small block slides from rest from the top of a frictionless sphere of radius R. How far below the top x does it lose contact with the sphere?
 - (a) R/2
 - (b) R/3
 - (c) R/4
 - (d) 3R/4

/14-A

24. Which of the following statements is correct?

- (a) Every LPP has at least one optimal solution
- (b) Every LPP has a unique optimal solution
- (c) If an LPP has two optimal solutions, then it has infinitely many solutions
- (d) None of the above

25. Which of the following sets is not convex?

- (a) $\{(x, y): x + y \le 1\}$
- (b) { $(x, y): x^2 + y^2 \le 1$ }
- (c) $\{(x, y): x + y \ge 1\}$
- (d) { $(x, y): x^2 + y^2 \ge 1$ }
- **26.** The maximum value of f = 4x + 3y, subject to constraints $x \ge 0$, $y \ge 0$, $2x + 3y \le 18$, $x + y \ge 10$, is
 - (a) 35
 - (b) 36
 - (c) 34
 - (d) None of the above
- 27. The number of telephone calls arriving at a switchboard during any 10-minute period is known to be a Poisson random variable X with $\lambda = 2$. Then the probability that more than 3 calls will arrive during any 10-minute period is
 - (a) 0·135
 - (b) 0·143
 - (c) 0·159
 - (d) 0·174

/14-A

28. A random variable R has probability density $f_R(x) = ke^{-\lambda x}$, $\lambda > 0$, $-\infty < x < \infty$, where k is a constant. Then the variance of R is given by

- (a) 0
- (b) 2/λ
- (c) $2/\lambda^2$
- (d) $4/\lambda^2$

29.

A system consisting of *n* separate components is first placed in series composition and then in parallel way. Assume that the components fail independently and the probability of failure of component *i* is p_i , $i = 1, 2, \dots, n$. The probability for both the series and parallel compositions of systems works respectively is

(a)
$$(1-p_1)(1-p_2)\cdots(1-p_n), \ 1-p_1p_2\cdots p_n$$

(b)
$$(1-p_1)(1-p_2)\cdots(1-p_n), p_1p_2\cdots p_n$$

(c) $1 - p_1 p_2 \cdots p_n$, $1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)$

(d)
$$1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n), p_1 p_2 \cdots p_n$$

30. Let R_1 and R_2 be independent. Assume that R_1 has the binomial distribution with parameters n and p, and R_2 has the binomial distribution with parameters m and p. Then the probability of the event is

(a)
$$\frac{{}^{n}C_{k-j}{}^{m}C_{j}}{\sum_{i=0}^{k}{}^{n}C_{i}{}^{m}C_{k-i}}}$$

(b)
$$\frac{{}^{n}C_{j} {}^{m}C_{k-j}}{{}^{m+n}C_{k}}$$

(c)
$$\frac{{}^{n}C_{j} {}^{m}C_{k-j}}{{}^{m+n}C_{k}} p^{k}$$

(d)
$$\frac{{}^{n}C_{k-j}{}^{m}C_{j}}{\sum_{i=0}^{k}{}^{n}C_{i}{}^{m}C_{k-i}}p^{k}$$

/14-A

- **31.** The range and kernel of $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z), where R, Im(T) and ker(T) denote the set of real numbers, range and kernel of T respectively are
 - (a) Im $(T) = \{x(1, 0, 1) + y(0, 1, 1) : x, y \in R\}, ker (T) = \{\alpha(1, 1, -1) : \alpha \in R\}$
 - (b) Im (T) = {x (1, 0, -1) + y(0, 1, 1) : x, y \in R}, ker (T) = {\alpha (-1, 1, -1) : \alpha \in R}
 - (c) Im (T) = {x (1, 0, 1) + y(0, -1, -1) : x, y \in R}, ker (T) = {\alpha (1, 1, -1) : \alpha \in R}
 - (d) Im $(T) = \{x(-1, 0, -1) + y(0, 1, 1) : x, y \in R\}, \text{ ker}(T) = \{\alpha(1, 1, -1) : \alpha \in R\}$
- **32.** Let S_n and K_n be vector spaces of symmetric and skew-symmetric matrices of order $n \times n$ over the field of real numbers. Then
 - (a) dimension of $S_n = \frac{n(n+1)}{2}$, dimension of $K_n = \frac{n(n-1)}{2}$
 - (b) dimension of $S_n = \frac{n(n-1)}{2}$, dimension of $K_n = \frac{n(n+1)}{2}$
 - (c) dimension of $S_n = n(n+1)$, dimension of $K_n = n(n-1)$
 - (d) dimension of $S_n = n(n-1)$, dimension of $K_n = n(n+1)$
- **33.** Consider the system of linear equations x+2y+z=4, 2x+y+2z=5, x-y+z=1. Then it has
 - (a) a unique solution at x = 1, y = 1, z = 1
 - (b) only two solutions (x = 1, y = 1, z = 1) and (x = 2, y = 1, z = 0)
 - (c) infinite number of solutions
 - (d) no solution
- **34.** The characteristic equation of a (3×3) matrix P is defined as $|\lambda I P| = \lambda^3 + \lambda^2 + 2\lambda + 1 = 0$. If I denotes the identity matrix, then the inverse of P will be
 - (a) $(P^2 + P + 2I)$
 - (b) $(P^2 + P + I)$
 - (c) $-(P^2 + P + I)$
 - (d) $-(P^2 + P + 2I)$

/14-A

35. Let A be a (2×2) matrix with elements $a_{11} = -1$, $a_{12} = a_{21} = a_{22} = 1$. Then the eigenvalues of the matrix A^{19} are

- (a) 1024 and -1024
- (b) $1024\sqrt{2}$ and $-1024\sqrt{2}$
- (c) $4\sqrt{2}$ and $-4\sqrt{2}$
- (d) $512\sqrt{2}$ and $-512\sqrt{2}$

36. $f(z) = \overline{z}, z \in \mathbb{C}$ satisfies which of the following?

- (a) It is analytic everywhere
- (b) It is analytic everywhere except at z = 0
- (c) It is analytic nowhere except at z = 0
- (d) It is analytic nowhere
- 37. The function

$$f(z) = \begin{vmatrix} \frac{z - \sin z}{z^3}, & z \neq 0\\ 0, & z = 0 \end{vmatrix}$$

has

(a) a removable singularity at z = 0

(b) a pole of order 2 at z = 0

- (c) a simple pole at z = 0
- (d) an essential singularity at z = 0

38. Let $C = \{z : |z| = \frac{3}{2}\}$. Then the value of the integral

$$\int_C \frac{z^2 + 5z + 2}{(z-1)(z-2)(z-3)} dz$$

is

(a) 4πi
(b) 6πi
(c) 8πi
(d) 10πi

/14-A

{ P.T.O.

39. Let C be the circle centered at origin and with radius 1. Then the value of the integral

$\int_C \frac{e^z}{z^3} dz$
$\int_C \frac{e}{z^3} dz$

- is
- (a) $e^{\pi i}$ (b) πi (c) $-\pi i$ (d) $e^{-\pi i}$

40. If $f(z) = 4z^3 - 3iz^2 + iz - 9$, then f(z) satisfies which of the following?

- (a) It has no zeros in |z| < 1
- (b) It has only one zero in |z| < 2
- (c) It has only two zeros in |z| < 3
- (d) It has all the zeros in |z| > 3

41. Let $f : [0, 1] \rightarrow R$ be a function such that

 $f(x) = \begin{vmatrix} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{vmatrix}$

Which of the following is true?

- (a) f is Riemann integrable over [0, 1]
- (b) f is Lebesgue integrable over [0, 1]
- (c) f is both Riemann as well as Lebesgue integrable over [0, 1]
- (d) f is neither Riemann nor Lebesgue integrable over [0, 1]
- **42.** Let X be the set of all irrational numbers with discrete metric. Then which of the following is true?
 - (a) X is complete
 - (b) X is compact
 - (c) X is connected
 - (d) X is bounded

/14-A

43.

- Which of the following is not a metric on R?
- (a) $d(x, y) = \min\{1, |x-y|\}$
- (b) d(x, y) = |x y|/|1 + |x y||
- (c) $d(x, y) = \sin|x y|$
- (d) d(x, y) = |x y|

44. The number of fixed points of the mapping $T: (0, 1) \to (0, 1)$ defined by $T(x) = \frac{1}{x}$ is .

- (a) 0 (b) 1
- (c) 2 (d) 4
- **45.** The dual space of ℓ^1 is
 - (a) ℓ^1 (b) ℓ^2 (c) ℓ^3 (d) ℓ^{∞}
- **46.** Consider the set $X = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under addition and multiplication modulo 8, then
 - (a) X is an integral domain
 - (b) X is a field
 - (c) X is a commutative ring
 - (d) X is a non-commutative ring

47. The polynomial $f(x) = 2x^2 + 4$ is

- (a) irreducible over Q
- (b) reducible over \mathbb{Z}
- (c) reducible over \mathbb{R}
- (d) irreducible over C

/14-A

48. The splitting field of the polynomial $x^4 + 4$ over Q is

- (a) $\mathbb{Q}(\sqrt{2})$ (b) \mathbb{Q}
- (c) \mathbb{Q} (*i*) (d) \mathbb{Q} ($\sqrt{2}$, *i*)

49. Let G be a group of order p^2 , where p is a prime. Then

- (a) G is non-Abelian
- (b) G is Abelian
- (c) G is cyclic
- (d) G is non-cyclic

50. Let G be a group of order 21. Then which is not correct?

- (a) G has a Sylow 7 subgroup
- (b) Sylow 7 subgroup of G is normal
- (c) G has 3 Sylow 3 subgroups
- (d) G has 1 or 7 Sylow 3 subgroups

51. The solution of the first-order ordinary differential equation

$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$

is

(a)
$$e^{-y} = e^{-x} + \frac{x^2}{2} + c$$

(b) $e^y = e^x - \frac{x^3}{3} + c$

(c)
$$e^{y} = e^{-x} + x + c$$

(d)
$$e^y = e^x + \frac{x^3}{3} + c$$

/14-**A**

52. The solution of the differential equation $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$ is

- (a) $x^2 y^2 = c_1, x^2 z^2 = c_2$
- (b) $x^2 + y^2 = c_1, x^2 + z^2 = c_2$

(c)
$$x - y = c_1, x - z = c_2$$

(d)
$$x^3 - y^3 = c_1, x^2 + z^2 = c_2$$

53. The necessary condition for integrability of the differential equation P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0

is
(a)
$$P\left(\frac{\partial Q}{\partial z} + \frac{\partial R}{\partial y}\right) + Q\left(\frac{\partial R}{\partial x} + \frac{\partial P}{\partial z}\right) + R\left(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x}\right) = 0$$

(b) $Q\left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) + R\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) + P\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$
(c) $P\left(\frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y}\right) + Q\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) + R\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$
(d) $P\left(\frac{\partial Q}{\partial y} - \frac{\partial R}{\partial z}\right) + Q\left(\frac{\partial R}{\partial z} - \frac{\partial P}{\partial x}\right) + R\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$

54. For the differential equation

$$\frac{d^2y}{dx^2} + \frac{7(x+1)}{2x}\frac{dy}{dx} - \frac{3}{2x^2}y = 0$$

the point x = 0 is a/an

- (a) regular singular point
- (b) irregular singular point
- (c) fixed point
- (d) saddle point

/14-**A**

55. The orthogonal trajectories of the family $y^2 = 4a(x+a)$ are the family

- (a) $x^2 = 4a(y+a)$
- (b) $y^2 = 4a(x+a)$
- (c) $y^2 = a(x+a)$
- (d) $y = 4a(x^2 + a)$

56. In the third quadrant of the xy-plane, the characteristic of the differential equation $(1+\sqrt{xy})u_{xx} + 2\sqrt{1+y-xy}u_{xy} + (1-\sqrt{xy})u_{yy} + x^2u_x + y^2u_y = 0$

is

- (a) real and positive
- (b) real and negative
- (c) identical
- (d) complex conjugates

57. The elementary solution of the Laplace equation $u_{xx} + u_{yy} = 0$ is

(a)
$$u(x, y; \xi, \eta) = [(x - \xi)^2 - (y - \eta)^2]/(2\pi)$$

(b)
$$u(x, y; \xi, \eta) = [(x - \xi) + (y - \eta)] / (2\pi)$$

(c)
$$u(x, y; \xi, \eta) = [\exp^{(x-\xi)} \sin(y-\eta)] / (2\pi)$$

- (d) $u(x, y; \xi, \eta) = [\log \sqrt{(x-\xi)^2 + (y-\eta)^2}]/(2\pi)$
- **58.** The space form of a wave equation $u_{tt} = u_{xx} + u_{yy}$ under the substitution $u(x, y, t) = \psi(x, y)e^{\pm ikt}$, where k is a constant, reduces to an equation of
 - (a) elliptic type
 - (b) parabolic type
 - (c) hyperbolic type
 - (d) None of the above

/14-A

59. The integral representation of the solution of the initial value problem

$$v\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad -\infty < x < \infty, \ t > 0$$

is given by

(a)
$$u(x, t) = \frac{1}{\sqrt{4\pi v t}} \int_{-\infty}^{\infty} e^{\frac{-(x-\xi)^2}{4vt}} d\xi$$

(b)
$$u(x, t) = \frac{x}{\sqrt{4\pi v t}} \int_{-\infty}^{\infty} e^{\frac{-(x-\xi)^2}{4vt}} d\xi$$

(c)
$$u(x, t) = \frac{x}{\sqrt{4\pi v t}} \int_{-\infty}^{\infty} \xi e^{\frac{-(x-\xi)^2}{4vt}} d\xi$$

(d)
$$u(x, t) = \frac{1}{\sqrt{4\pi v t}} \int_{-\infty}^{\infty} \xi e^{\frac{-(x-\xi)^2}{4vt}} d\xi$$

60. If $\overline{u}(x, s)$ represents Laplace transform of u(x, t), then the initial value problem

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \ t > 0$$
$$u(x, \ 0) = 0, \quad \frac{\partial u(x, \ 0)}{\partial t} = \sin(\pi x)$$

transforms to

(a)
$$\frac{d^2\overline{u}}{dx^2} + s^2\overline{u} = \sin(\pi x)$$

(b)
$$\frac{d^2\overline{u}}{dx^2} - s^2\overline{u} = -\sin(\pi x)$$

(c)
$$\frac{d^2\overline{u}}{dx^2} + s\overline{u} = \sin(\pi x)$$

(d)
$$\frac{d^2 \overline{u}}{dx^2} - s\overline{u} = -\sin(\pi x)$$

/14-**A**

19

Newton's method for finding the positive square root of R > 0 is 61.

(a)
$$\frac{x_i x_{i-1} + R}{x_i + x_{i-1}}$$

(b) $\frac{1}{2} \left(x_{i+1} + \frac{R}{x_i} \right)$
(c) $\frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$
(d) $\frac{2x_i^2 + x_i x_{i-1} - R}{x_i + x_{i-1}}$

The spectral radius of the matrix 62.

٢ O	1/3	1/4
-1/3	0	1/2
_1/4		0

- is
- 5/6 (a)
- 7/12 (b)
- 3/4 (c)
- (d) 1/3

63.

The truncation error in quadratic interpolation in an equidistant table is bounded by

(a)
$$\frac{h^2}{9\sqrt{3}} \max |f'''(\xi)|$$

(b) $\frac{h^2}{\sqrt{3}} \max |f'''(\xi)|$
(c) $\frac{h^2}{9} \max |f'''(\xi)|$
(d) $\frac{h^2}{\sqrt{2}} \max |f'''(\xi)|$

/14-**A**

20

64. A scientist uses the one-point Gauss quadrature rule based on getting exact results of integration for functions f(x) = 1 and x. The one-point Gauss quadrature rule approximation for $\int_{a}^{b} f(x) dx$ is

(a)
$$\frac{b-a}{2} [f(a) + f(b)]$$

(b)
$$(b-a)f\left(\frac{a+b}{2}\right)$$

(c) $\frac{b-a}{2} \left[f\left(\frac{b-a}{2} \left\{-\frac{1}{\sqrt{3}}\right\} + \frac{b+a}{2}\right) + f\left(\frac{b-a}{2} \left\{\frac{1}{\sqrt{3}}\right\} + \frac{b+a}{2}\right) \right]$

(d)
$$(b-a) f(a)$$

- **65.** For a definite integral of any third-order polynomial, the two-point Gauss quadrature rule will give the same results as the
 - (a) 1-segment trapezoidal rule
 - (b) 2-segment trapezoidal rule
 - (c) 3-segment trapezoidal rule
 - (d) Simpson's 1/3rd rule
- **66.** The total number of generalized coordinates of a system of two particles moving on the surface of a sphere $x^2 + y^2 + z^2 = 100$ is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

/14-**A**

21

67. If p and q are the generalized momentum and coordinate of a Hamiltonian system described by $H = \frac{1}{2} (p^2 - q^2)$, the equation of motion is given by

(a)
$$\frac{d^2q}{dt^2} + \frac{dq}{dt} + q = 0$$

(b)
$$\frac{d^2q}{dt^2} - q = 0$$

(c)
$$\frac{d^2q}{dt^2} - \frac{dq}{dt} - q = 0$$

(d)
$$\frac{d^2q}{dt^2} + q = 0$$

- **68.** The canonical transformation of coordinates q and p in two-dimensional phase space is given by $\overline{q} = q p$, $\overline{p} = q + p$. Then the corresponding Hamiltonian transformation is given by
 - (a) $\overline{H} = 2H$
 - (b) $\overline{H} = H$
 - (c) $\overline{H} = -2H$
 - (d) $\overline{H} = -H$

69. The extremal of the integral $\int_0^{\pi/2} (y'^2 - y^2) dx$, y(0) = 0 and $y\left(\frac{\pi}{2}\right) = 1$ is

- (a) $\sin x + \cos x$
- (b) $\sin x \cos x$
- (c) $\sin x$
- (d) $\cos x$
- 70. The path that minimizes the arc length of the curve between $(x_0, y_0) = (0, 0)$ and $(x_1, y_1) = (1, 1)$ is

22

- (a) y(x) = x (b) $y(x) = x^2$
- (c) $y(x) = x^3$ (d) $y(x) = x^4$

/14-**A**