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PART—A

D72
The sequence < a,> defined by a, = ¥,
“ n

= x
fa) is oscillatory

(b} diverges to +e

{[c} diverges to —e

(d) converges to 0

The value of the integral

I (sin2 z+2Hcosz + )
c z{z+6)

where, z is complex and C={z:|z|=1} equals

fa) mi/3
(b) 2mi/3
(c) 4ni/3
@ o

If B denotes the set of reai numbers, T the cofinite topology on B and U the usual
topology on R and if f: (R, T}—»(R, U] and g: (B, Ul—=(R, T) be identity maps, then which

of the following is true?

{a} [ is continuous, g is discontinuous
(b} g is continuous, fis discontinuous
(¢} fand g both are continuous

{4} fand g both are discontinuous

In which of the following Banach spaces is the parallelogram law satisfied?

(&) Ip

(b} 4

© Lo

d) €0 3

[PT.0.
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[f T is a continuous linear operator on a normed linear space X, then which of the
following is not true?

(@ If <x,>—> x weakly in X, then < Tx, > Tx weakly in X
(b} If < x,>— x strongly in X, then < Tx,>— Tx strongly in X
() If < x,>->x strongly in X, then <Tx,>—Tx weakly in X

(&) If < x,>— x weakly in X, then < Tx, >— Tx strongly in X

If fand g be two real-valued functions defined on a closed bounded interval [ and if
f = g almost everywhere on I, then which one of the following is mot true?

{a} If fis measurable (Lebesgue), then g is also measurable on I
{b) If fis non-measurable, then g is also non-measurable on [
(¢) I fis continuous, then g is also continuous on I

{d) If fis integrable, then g is also integrable on [

Which one of the following statements is nrot true?
{a} Cantor’s ternary set has measure (Lebesgue) zero.

(b) The set of irrationals of the form Jn ++m, (n and m are natural numbers) has
measiire Zero.

{c} The set of algebraic real numbers has measure zero.

{d} The set of transcendental real numbers has measure zero.
The dimension of the subspace of Moy spanned by

SRR I L )

is

(@) 1
(b} 2
¢ 3
@ 4



9. If Aand Bare n-square positive definite matrices, then which of the following is positive

definite?
6] A+B
(b} ABA
(c) AB

@ AZ+1

10. If Gis a group of order 91, then which of the following statements is false?
{a) G has one subgroup of order 7
(b} G has two subgroups of order 13
fc) G has subgroups of order 7 and 13

{d} None of the above

11. Let G be a group and let H and K be two subgroups of G. If both H and K have
12 elements, then which of the foliowing numbers cannot be the cardinality of the set

HK ={hk : he H, keK}?

fa} 72
b) 60
(c) 48
(@) 36

12. In Uf40), the cyclic subgroups of order 4 are
(a} 4
(b} only one
(c} at most equal to order of the group

(d} exactly two
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14,

15.

i6.
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If 8, be the symmetric group of n letters, then there exists an onto group
homomorphism

(a) from Sy to Sy

(B} from 84 to Sy

{c} from S5 to Z/5

{d) from S4 to Z/4

For a group G, if Aut{G) denotes the group of automorphisms of G, then which of the
following statements is true?

(@) Aut (Z) is isomorphic to Zg

(b} If Gis cyclic, then Aut (G is cyclic

{¢) If Aut{G) is trivial, then G is trivial

(d} Aut (Z) is isomorphic to Z

The general solution of the differential equation

dy_,dy
dx

5 + 8y =10e* cosx
dx

is

(a) e 2X(kjcos2x +kp sin2x) - e*{2cos x - sinx}
(b) e ?*{k; cos2x +kn sin2x) + e (2cos x +sin x)
(€) e2*(kjcos2x +kpsin2x)+e*2cosx ~sinx}

(d) e?*(k;cos2x + ko sin2x) + e*{2cos x +sinx)

The region in which the equation X, +Uy, = x? is hyperhbolic is

(a} the half plane x <0
{v) the whole plane R?
(c) the half plane y> 0

[d) the half plane x>0



17.

180

19.

/14-A

2 2
The general solution of the differential equation (6x% ~e ¥ Jdx +2xye ¥ dy=0is

@ x@2x?+ e‘yz) =c
) x@x2-e¥y=c
{c) x2(2x+e'yg) =g

@ x2px-e¥)=c

The solution of the initial value problem

2
A7y _ ey

ax? dx

is

@ y=e>*2sindx- 3cosdx
(b) y=e3*{2cos2x + 3sin2x)
() y=e 3%¥@2sin2x - 3c082x)

d)  y=e 3 (2sindx + 3cosdx)

'1"259' =0, y(O) =-3, Y [O) = -1

The general integral of the partial differential equation z(xp — ygj = yg -x2 is

(@ 2% =x2+y%+fia)
(b) 22 =x2-y?+fixy)
@ 22 =y%-x2+f(xy)

(d) 22 =-x2~y?+ fixy)

[P.T.O.



20. The general solution of

3 2
ﬂ+3i§+3@+y=0
ax3 dx?  dx
is
2 -x

fa) ¢ +tegx+egxe”

(b) ¢ +epx +cgxle®

(€ (o +eox+ caxg}e“x

{d) (o +eox+ c:3x2) e”
21. For the equation
2
xz[x—2)d—2y+{x+ 39 _ g4y 0
dx dx
consider the following statements :
P x=0is a regular singular point

Q : x =2 is a regular singular point
Then

(@) P is false but Q is true
(b} P is true but Q is false
{t} both Pand Q are true

(d) both P and @ are false

22. If A and V are the forward and the backward difference operators respectively, then
V- A is equal to

@ <

b} AV
€} ~AV
() A+V

/14-A 3



23. The maximum step size h is such that the error in linear interpolation for the function
y=sin{x) in [0, 7] is less than 5x107° is

@) 002
(b) 0-002
©) 004
@ 006

24, If |errorf< 10'4, then the number of iterations for finding root of cos(x)-&™* = 0 by

bisection method in interval [—%, %:l is

{a} at least 10
(b) at least 14
{c}] at least 17

(d) None of the above

25. A problem in statistics is given to three students whose chances of solving it are
1/2, 1/3 and 1/4 respectively. The probability that the problem will be solved is

(&) 1/8
b} 1/24
(c} 3/4
(d) 3/8

26. The density function of a random variable x is given by f(x)=kx{2-x], 0<x<2.
Its mean is given by

@ 1

(b) 3/4
() 1/2
@ 1/4

/14-A 9 [ B.T.0.



27. The value of the moment generating function Mg (f} of the exponential distribution
fix)=8e"8 0< x <oe at t=3is given by

(@) 5/8
b) 1/2
(c) 8/5
(@ 2

28. The solution set which satisfies the non-negativity constraint is classified as
{a) basic feasible solution
(b} feasible value solution
(c) basic solution

{d) positive-negative value

29. The primal problem has unbounded solution if
(a) dual has bounded solution
(b} dual has unbounded solution
{c} dual has no feasible solution

{d) dual has feasible solution

30. In a maximization LPP, the variable corresponding to the minimum ratic with solution
column leaves the basis. This ensures

(a} the largest rise in the objective function
{b} that the next solution will be a BFS
{c} that the next solution will not be unbounded

(d) None of the above

/14-A : 10



PART--B

31. Let fbe defined as f(x) = Max{([x?], x}, x € [0, 2]; where [y] denotes the greatest integer
less than or equal to y. Then f satisfies which of the following?

{a) f is continuous at all points in [0, 2] except one point
(b) f is continuous at all points in [0, 2] except two points
(¢} f is continuous at all points in {0, 2] except three points

{d} f is continucus at all points in {0, 2]

32. Let fbedefinedas f{x)=x>-3x+1, xe {0, 1}. Then [ satisfies which of the following?

(@)  fix}= 0 for any x in [0, 1]
(b}  f(x) has exactly one zero in {0, 1]
(e} fi{x) has exactly two zeros in [0, 1]

{d} f(x} has all the three zeros in [0, 1]

33. The series

2,2 33,3
1+ X 27X7, 3°x
1 21 a3l

+oe, x>0
is

{a} convergent for all x>0

(b divergent for x=1/ e®

(c) divergent for x =1/e?

{d} divergent for x=1/e

34. The sequence of functions < f,, > defined on [0, 1] as Jnilxt= ﬁﬁ—, n=312 3 --
satisfies which of the following? . :
{a) uniformly convergent over [0, 1]
(b} only pointwise but not uniformly convergent over [0, 1}

{c} uniformly convergent in [0, w12~] and pointwise only for -é- <x=<]

{d} pointwise convergent only at x =0

/14-A 11 [ P.T.O.



xX-y

35. The analytic function whose imaginary part is ——— is
x2 + y2
iz
() +c
1+ 22
(b) (1+z:}2: .
1+ 2
{c) iri +c
Z
Al _ Ni
(d) te ) +c
l+=2

36. Residue of the function fi{2} =zcos(1) at z=01s
z

(a) ~1/2
)y -1/3
ey -1/4
d ©

37. Which of the following is not true?
(@) The set of rational numbers with the usual relative topology of R is disconnected
(b} The set of irrational numbers with the usual relative topology of R is disconnected
f¢) The set of real numbers R with the usual topology is disconnected

(d) The set of real numbers R with the topology generated by semi-open interval (¢, b}
is disconnected

38. Which of the following normed linear spaces is not Banach?

(a} ‘The space of all continuous functions on {0, 1] with norm || fl|= I; | fFix) | dx

(b) The space of all continuous functions on [0, 1} with norm
ILF}l=sup{lf(x)]: x [0 1}

' n

. 2

¢} The space C™*={{z}, Z5, -, 2,): 2;€C} with norm |2y, 23, -, Zp}ll= P
i=1

(d) The space of all Lebesgue integral functions on {0, 1} with norm [|Lf Y= _[(1}|f[t]|dt

/14-A 12



39. Let T be a bounded linear operator defined on C? as T, 0 =(0, 1) and T(0, 3 =(L O
Then o(T}, the spectrum of T equals

{a} {0 1)
(b} {0 -1}
e} {L-1}
[CUNNREY

40. Let < f, > be a sequence of functions defined on {0, 1] as

0, O<x<—=

2n
" 1 1
Ja=:2n, -Z<x<=
2n n
0, Yexs<i

n

Then which of the following does not hold?
fa) fn — f almost everywhere on [0 ]]
(b} Fatou's lemma holds

(¢} dominated convergence theorem cannot be applied

@ Jolim fp(dde= lim [ faax

Tn—poa

41. Let A and B be nxn real matrices such that AB= BA = O and A+ Bis invertible. Then
which of the following may not be true?

{a) rank (A) = rank {B)
(b} rank {A)+ rank (B)=n
{c} nullity (4] + nullity (B} = n

(d) A- B is invertible

42, LetT:R3 —» R3suchthatT{a b, d=(0, a b}, for(a b, g€ R3. Then T+ I'is a zero of the

polynomial
fa) t

b} 2

) ¢

(d) None of the above

/14-A 13 [P.T.O.



43.

a4,

45,

/14-A

If A and B are square malrices such that AB =1, then zero is an eigenvalue of
a} Abutnotof B

(b] Bbutnotof &

(¢) both A and B

{d) neither A nor B

let A= (alj) be nx n complex matrix and A* denote the conjugate transpose of A. Then

which of the following statements is false?

fa} If A is invertible, then tr(A*A) = 0, i.e., trace of A” A is nonzero
(b) If tr (A" A} = 0, then A is invertible

(€} I {r(A*4) | <n?, then lag 1< 1 for some i j

{d} If tr{A*A) =0, then A is zerc matrix

If 0:{12 3 4,5}—{12 3 4, 5} be a permutation {one-to-one and onto function)
such that 0_1{j} <g(j) for all j 1< j<5, then which of the following is false?

(a) coo(fj=jforall j1<j=<5
(b} o lj)=c(j)forall j 1<j<5
(c) The set {k:co(k]# k} has an even number of elements

(d) The set {k:olk)=#k} has an odd number of elements

let G be a group. Suppose |G|= p‘?q, where p and g are distinet prime numbers
satisfying
g # lmodp

Then which of the following is true?

{8 G has more than one p-Sylow subgroup

{b) G has a normal p-Sylow subgroup

{c)] The number of g-Sylow subgroups of G is divisible by pd

(d) G has a unique g-Sylow subgroup

14



47. If C{[0 1)) be the ring of all real-valued continuous functions en [0, 1], which of the
following statements is true?

{a) C{0 1)) is an integral domain

(b) ‘The set of all functions vanishing at 0 is a maximal ideal

(¢) The set of all functions vanishing at both ¢ and 1 is a prime ideal

(d) If feC(o 1)) is such that (f {x)}" = 0 for all x€[Q 1] for some n> 1, then
filx)=0 for alt xe{0, 1]

48. Which of the following polynomials is irreducible over the indicated rings?
(a) x®-3x*+2x% -5x+8 over R

) x¥+x2+1over Z/27Z

i©) x2+3x%-6x+3 over Z

{d) None of the above

49, Let PID, ED, UFD denote the set of all principal ideal domains, Euclidean domains,
unique factorization domains, respectively. Then

(a} UFDc EDc FID
(b} PIDc EDc UFD
{c} EDc PIDc UGFD

(@) PIDc UFDc ED

50. The solution of the Cauchy problem for the first-order partial differential equation

xa—z+y§E=z, on D={{x,y,z}:x2+y2¢0,z:-0}
ox oy

with the initial conditions x? + y2 =Lz=1is
fa) z= :»c2 + y2

(b) z=(x*+y?)?

© z=(2+y?)2

1
@ z=@-(x?+y?)2

/14-A 15 [P.T.O.



51. The orthogonal trajectories of the system of parabolas y2 =4a(x + a) belong io

2 2

(a) the system of circles x2 + y° =a
(b} the system of hyperbolas xy= a*
{c} the system of parabolas y° = 4a(x +a)

(d} None of the above

52. Applying Charpit’s method, the solution of the equation px+qy= pg is

(@) az=%(ax+y]+b
(b) az=—é(ay+x}+b
{c} az= %(aywtx}% +b

@ az=fax+y)?+b

83. The general solution of the second-order partial differential equation

U +Uyy =2ty = ¥+ Ne*

is given by

(a)  op{y+ X+ bdoly—2x) + ye*
(B)  d1{y+x) + doly~2x) + xe”¥
X

(e} o{y—x)+ ooy +2x) +ye~

{d)  oy{y—x)+ 0aly+2x) + xe¥

/14-A 16



54, The solution of the total differential eguation (xgzﬁ ys)dx+3xy2dy+ x3dz=0 is
given by

) w+i-=c
X

{b)] xz+=—=c¢

{c) yz+5—=c

(d) .xz+£—=c

2%y 2%u

55. The partial differential equation — — ¥ =0 has
ay? T ox?

{a) no real characteristics for y>0
{b) two families of real characteristic curves for y< 0
(c} branches of quadratic curves as characteristics for y= 0

(@) wvertical lines as & family of characteristic curves for y=0

56. The general integral of the partial differential equation
(x2 = y2 —zz}a—z+2wa—z =2xz
ox Yy

is

(a] f 1z

{ 2 2 2°
xX® + + &
b f g W—E’L——}o

2
© f'ig-*ag—"§]=°

2
@ £l —2"——2]=o

/14-A 17 [ P.T.0.
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60.
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If J,, {x} defines the Bessel’s function of the first kind and of order n, then which of the
following is true?

(m-%&m%MFxm

(b L(x () = s 1)

dx

d. _n n
©) ) = x4 ()
(d) %wﬂ%MFo

The partial differential equation for the family of surfaces z = ce®! sin{wx), where ¢ and w
are arbitrary constants is

a} =z, ~Zy =0
(b) zZyy t24 =0

(d] th +zxx=0

The interpolating polynomial for the function satisfying the data
FEY=-2 fO=-1 f@=7 F'(-)=-3 (0 =4, f'Q =236

is

(@) p=x%+4x +4x-1

(b} pl=x-4x31ax-1

f£) pl=x-4x3-4x-1

{d} None of the above

The second-order Runge-Kutta method with step-size 0-5 applied to the equation

dy Y
—==1+Z, y{f=1
z " yi3

gives the approximate solution
(8) y2-09=1-39
b)) y2-99=2-39
{c) yR2-0)=3.39
d) yi2-0)=4.39

18



61. The coefficients in the three-step multistep method
Yip1 — Y = Rlag fixp v+ oy fix, Yol
for the equation y'(x) = f [x, 1 are

@ ag=2a =3
(b} ag=3/2 a =-1/2
© ag=2/3 a =3/2
(&) ag=1 a=1

62. The least square polynomial approximation of degree one for fix) = x3 on the interval
[0, 1] with weight function 1 is

Ox-2

(&)

(b)

(e

(d)

63. A man parks his car among 27 cars in a row not at either end. On his return, he finds
that 12 places are still occupied. The probability, that both neighbouring places are

empty, is
(@) 12/25
(b) 21/65
©) 6/13
(d) 13/25

64. A random variable x can assume any positive integral value n with a probability

proportional to —ln— Then E{x) equals
3

fa} 3/2
) 4/3
¢ 5/4
@ 1

/14-A 19 [ P.T.O.



65. A and B alternately throw a pair of dice. The one who throws 9 first wins. The chances
of their winning are in the ratio

@) 6:5
b) 7:6
) 8:7
@ o9:8

66. The frequency distribution of a measurable characteristic varying between 0 and 2 is

f(x}={

x3 , O0=xx=1
@-x3 |, 1<x<2

The mean deviation about the mean is

(a) 173
b 1/4
(©) 1/5
@ 1/6

67. Addition of a new constraint to an LPP can affect

fa} feasibility condition only

(b} optimality condition only

fe} feasibility and optimality conditions both

(d] neither feasibility nor optimality conditions

/14-A 20



68.

69.

70.
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If the primal constraint is originally in equation form, then the corresponding duat
variable is necessarily

(a}

(b)

d

Pick

()

(b)

(d)

non-negative
positive
unrestricted

None of the above

the wrong staternent.
The dual of the dual is primal.

An equation in a constraint of a primal problem implies the associated variable in
the dual problem to be unrestricted in sign.

If a primal variable is non-negative, the corresponding dual constraint is an
eguation,

The ohjective function coefficients in the primal problem become right-hand side of
constraints of the dual.

Change in availability vector and addition of new constraint, simuitaneously to an LPP

(&)

(b)

(€]

(<}

may disturb feasibility

may disturb optimality

may disturb both feasibility and optimality

Neone of the above

21 [ P.T.O.



SPACE FOR RQUGH WORK

/14.A 27



