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Syllabus

0.1 Syllabus

0.1.1 Differential Equation

Limit, continuity and differentiability,
successive differentiation of various types of functions, Leibnit‘z theorem, Rolle‘s theorem,

Mean Value theorem, expansion in finite and infinite forms, Lagrange’s form of remainder, Cauchy’s
form of remainder (expansion o remainder), expansions of functions differentiation and integration,
indeterminate form, Cartesian differentiation, Euler‘s theorem, tangent and normal, sub tangent and
subnormal in cartesian and polar coordinates, maxima and minima of functions of single variables,
curvature, asymptotes.

0.1.2 Integral Calculus

Definition of integrations, integration by the method of substitution, integration by parts, standard
integrals,

integration by the method of successive reduction, definite integrals and its use in summing series,
Walli‘s formula, improper integrals, beta function and gamma function, multiple integral and

its application, area, volume of solid revolution, area under a plain curve in Cartesian and polar
coordinates, area of the region enclosed by two curves in Cartesian and polar coordinates, arc lengths
of curves in Cartesian and polar coordinates.



0.2 Text & References Books

0.2 Text & References Books

0.2.1 From National University

1. A text Book of Differential Calculus – Rahman and Bhattachrjee.
2. Differential Calculus – Shanti Narayan.
3. Differential Calculus – Dr. B. D. Sharma.
4. Differential Calculus – Das and Mukhajee

0.2.2 From Instructor

1. Calculus with Analytic Geometry- George Simmons - Second Edition.
2. A text Book of Differential Calculus – Rahman and Bhattachrjee.
3. A text Book of Integral Calculus – Rahman and Bhattachrjee.

0.2.3 Quick Review

1. Engineering Mathematics - John Bird- Sixth Edition.
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Chapter 0 : CONTENTS

0.3 Marks Distribution

In-course will be conducted by course teacher.

Attendance In-course Final Exam Total
10 20 70 100

0.3.1 Marks Distribution for Final Exam

Time: 3:00 Hours
Full Marks: 70

Section Question Type No. of Question Have to Answer Mark per Question Marks
Section-A Brief questions 8 5 2 10
Section-B Short questions 8 5 4 20
Section-C Broad questions 7 4 10 40

Total 70
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Chapter 1 Preliminary Mathematics

Introduction

h Number Systems
h Simultaneous Equations
h Quadratic Equations
h Inequalities

h Sequences & Series
h Permutations & Combinations
h The Binomial Theorem
h Trigonometry

1.1 Numbers Systems

1.1.1 Real numbers

Definition 1.1

♣

The numbers 1, 2, 3, . . . are known as the natural, or counting numbers and the set of integers
is denoted by N, i.e.

N = {1, 2, 3, . . . }.

Natural numbers are generally used for counting (”scores in sports”), ordering (”ranking in
sports”), and labeling (”sports jersey numbers”). Numbers used for counting, ordering and labeling
are called cardinal, ordinal, and nominal numbers respectively.

Definition 1.2

♣

The natural numbers with zero are often called whole numbers is denoted by N0,

N0 = {0, 1, 2, 3, . . . } = {0} ∪ N.

Whole numbers are used where beginning from zero is important like in some programming
languages and also used in time.

Definition 1.3

♣

The natural numbers, their negatives and zero form the set of integers and denoted by Z,

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

The negative numbers are the additive inverses of the corresponding positive (natural) numbers.

Definition 1.4

♣

Numbers which are quotients,vv or can be expressed in the form p
q
, where p, q ∈ Z with q 6= 0,

is called rational numbers, and is denoted by Q,

Q = {r|r =
p

q
, where p, q ∈ Z & q 6= 0}.



1.2 Simultaneous Equations

Definition 1.5

♣

A number which represents a certain length on a straight line but can not be expressed in the
form p

q
, where p, q ∈ Z with q 6= 0, is called irrational numbers, and is denoted by Q̄.

Some important irrational numbers are π, e, and square roots of some integers.

Definition 1.6

♣

Rational and irrational numbers together form the continuum of real numbers or set of real
numbers is denoted by R,

R = Q ∪ Q̄.

It can be easily observed that
N ⊂ Z ⊂ Q ⊂ R.

The rational numbers Q are countable but infinite also called countably infinite, where irrational
numbers are not countable and also infinite.

N N0 Z Q R

Figure 1.1: The rational numbers Q are included in the real numbers R, while themselves including
the integers Z, which in turn include the natural numbers N.

Above all the sets are infinite and R is the largest one.

1.2 Simultaneous Equations

Equations that have to be solved together to find the unique values of the unknown quantities,
which are true for each of the equations, are called simultaneous equations.

There are several methods of solving simultaneous equations analytically are:
1. by substitution,
2. by elimination,
3. by graph,
4. by determinants, and
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Chapter 1 : Preliminary Mathematics

5. by matrices.

1.2.1 Solving by Determinants

Determinants is the best method for solving simultaneous equation of two variables, and the worst
method for solving more than two variables (as graph is not suitable for more than two variables).
Practically, matrices are used to solve linear systems (simultaneous equations) more than two variables,
you may learn it later. Here, we will discuss only the determinants method.

A general simultaneous equations can be written as

a1x+ b1y = c1 (1.1)

a2x+ b2y = c2 (1.2)

then the solution of the equations (1.1)-(1.2) are given by

x =

∣∣∣∣∣c1 b1

c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣
=
b2c1 − b1c2

a1b2 − a2b1

(1.3)

y =

∣∣∣∣∣a1 c1

a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣
=
c2a1 − c1a2

a1b2 − a2b1

(1.4)

If the given equations are given as follows
a1

x
+
b1

y
= c1 (1.5)

a2

x
+
b2

y
= c2 (1.6)

then the solution of the equations (1.5)-(1.6) can be written as

1

x
=

∣∣∣∣∣c1 b1

c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣
=
b2c1 − b1c2

a1b2 − a2b1

(1.7)

1

y
=

∣∣∣∣∣a1 c1

a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣
=
c2a1 − c1a2

a1b2 − a2b1

(1.8)

If the given equations are given as follows
p

a1x+ b1y
= c1 (1.9)

q

a2x+ b2y
= c2 (1.10)

7



1.3 Quadratic Equations

then equations (1.9)-(1.10) can be rewritten in the form (1.1)-(1.2) and then can be solved by (1.3)-(1.4)

1.3 Quadratic Equations

An equation is a statement that two quantities are equal and to ‘solve an equation’ means ‘to find
the value of the unknown’. The value of the unknown is called the root of the equation.

A quadratic equation is one in which the highest power of the unknown quantity is 2. A general
quadratic equation can be written as

ax2 + bx+ c = 0. (1.11)

There are four methods of solving quadratic equations. These are:
1. by factorization (where possible)
2. by ‘completing the square’
3. by using the ‘quadratic formula’, and
4. by graphically.

1.3.1 Solving by Quadratic Formula

If ax2 + bx+ c = 0 then the solution is given by the quadratic formula

x =
−b±

√
b2 − 4ac

2a
=
−b±

√
∆

2a
. (1.12)

Here, ∆ = b2 − 4ac. ∆ = b2 − 4ac = 0 is also called the characteristic equation, which determine
the characteristics of the equation.

solutions are


conjugate complex ∆ < 0

real and equal ∆ = 0

real and unequal ∆ > 0.

(1.13)

Along with this if b = 0 then the solution set will be purely imaginary (∆ < 0) or real (∆ > 0) and
also one solution will be negative to other solution i.e. if x1 and x2 are two solution then x1 = −x2.

1.4 Inequalities

An inequality is any expression involving one of the symbols <, >, ≤ or ≥.
p < q means p is less than q
p > q means p is greater than q
p ≤ q means p is less than or equal to q
p ≥ means p is greater than or equal to q.

To solve an inequality means finding all the values of the variable for which the inequality is true.
Two simple rules for solving inequality,

8



Chapter 1 : Preliminary Mathematics

1. If k ∈ R is added to both sides of an inequality, the inequality still remains, i.e.

ax+ b > c =⇒ ax+ b+ k > c+ k

ax+ b < c =⇒ ax+ b+ k < c+ k

ax+ b ≥ c =⇒ ax+ b+ k ≥ c+ k

ax+ b ≤ c =⇒ ax+ b+ k ≤ c+ k

2. If k > 0 is a real number multiplied both sides of an inequality, the inequality still remains the
same.

ax+ b > c =⇒ k(ax+ b) > ck

ax+ b < c =⇒ k(ax+ b) < ck

ax+ b ≥ c =⇒ k(ax+ b) ≥ ck

ax+ b ≤ c =⇒ k(ax+ b) ≤ ck

3. If k < 0 is a real number multiplied both sides of an inequality, the inequality is reversed.

ax+ b > c =⇒ k(ax+ b) < ck

ax+ b < c =⇒ k(ax+ b) > ck

ax+ b ≥ c =⇒ k(ax+ b) ≤ ck

ax+ b ≤ c =⇒ k(ax+ b) ≥ ck

1.4.1 Modulus

The modulus of a number is the size of the number, regardless of sign. Vertical lines enclosing
the number denote a modulus. Mathematically,

|x| =


−x x < 0

0 x = 0

x x > 0.

(1.14)

Example 1.1 By using (1.14) one can show that

|t| ≤ 5 =⇒ −5 ≤ t ≤ 5.

Example 1.2 For an inequality, we can write,

|ax+ b| ≤ c

=⇒ −c ≤ ax+ b ≤ c

=⇒ −b− c ≤ ax ≤ −b+ c

=⇒ −b− c
a

≤ x ≤ −b+ c

a
[if a > 0]. (1.15)

1.5 Sequences & Series

A sequence is a order set where each element can be indexed by natural numbers. Deepening on
the context it may begin from zero or one.
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1.5 Sequences & Series

Definition 1.7

♣A sequence is a function of natural numbers, denoted by {an}.

There are two sequence Arithmetic and Geometric progression, are most used. There are also
other important sequence, some of the sequences are available in nature.
Example 1.3 One of the most important sequence is Fibonacci sequence, which is as follows,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . (1.16)

The sequence is defined as

F0 = 0, F1 = 1, (1.17)

Fn = Fn−1 + Fn−2, n > 1. (1.18)

Let an be a given sequence of real or complex numbers, and form a new sequence sn as follows:

sn = a1 + a2 + · · ·+ an =
n∑
k=1

ak [n = 1, 2, 3, . . . ] (1.19)

Definition 1.8

♣

The ordered pair of sequences of ({an}, {sn}) is called an infinite series. The number sn, is
called the nth partial sum of the series. The series is said to converge or to diverge according
as {sn} is convergent or divergent.

1.5.1 Arithmetic Progression

Definition 1.9

♣

Arithmetic progression is a sequence where common difference (d) between two successive
terms is constant.

Example 1.4

a+ (a+ d) + (a+ 2d) + (a+ 3d) + · · ·+ (a+ (n− 1)d) (1.20)

(1.20) is a AP, where d is the common difference. kth element is ak = a+ (k − 1)d. The sum of the
series sn is given by

sn =
n

2
(a1 + an) =

n

2
[2a+ (n− 1)d] (1.21)

1.5.2 Geometric Progression

Definition 1.10

♣

Geometric progression is a sequence where common ratio (r) between two successive term is
constant.

Example 1.5

a+ ar + ar2 + ar3 + · · ·+ arn−1 (1.22)

10



Chapter 1 : Preliminary Mathematics

(1.22) is a GP, where r is the common ratio. kth element is ak = ark−1. The sum of the series sn is
given by

sn =
a(1− rn)

1− r
=

a

1− r
− arn

1− r
[r 6= 1] (1.23)

if r < 1 then rn → 0 as n→∞, which (1.23) provide us

s∞ =
a

1− r
, (1.24)

this is called sum of infinite series.

1.6 Permutations & Combinations

1.6.1 Combinations

Let we are interested to make all teams of 3 digits from 10 digits (0-9), here 123 and 231 are
same team because all digits 1,2, and 3 belongs to same team such problems are called Combination
problems.

Definition 1.11

♣

A combination is the number of selections of r ≤ n different items from n distinguishable items
when order of selection is ignored. A combination is denoted by nCr or,

(
n
k

)
, where

nCr =
n!

r!(n− r)!
(1.25)

These types of problem generally contains words like table, team, committee, party, etc.

1.6.2 Permutations

Now, let we are interested to sort all 3 digits numbers (repetition is not allowed) from 10 digits
(0-9), here 123 and 231 are different numbers, such problems are called Permutation problems. Note 1: text for

right-hand side of
pages, it is set jus-
tified.

y = mx+ c

Definition 1.12

♣

A permutation is the number of ways of selecting r ≤ n objects from n distinguishable objects
when order of selection is important. A permutation is denoted by nPr, where

nPr =
n!

r!
(1.26)

These types of problem generally contains words like sort, choose, select, etc.

11



1.7 The Binomial Theorem

1.7 The Binomial Theorem

Definition 1.13

♣

The binomial coefficient
(
n
k

)
is the coefficient of an−kbk in the expansion of (a+ b)n, where the

expansion is called the binomial expansion, written as

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

k

)
an−kbk + · · ·+ bn (1.27)

1.8 Proportional

Definition 1.14

♣

Let two variables are related such that if one of them changes then other variable also changes,
then these two variables are said to be proportional to each other.

There are two types of proportionality
Directly proportional
Inversely proportional

Definition 1.15

♣

Let two variables are proportional to each other such that if one of them increases or decreases
than other one also increases or decreases accordingly than they are called directly proportional
to each other.

Example 1.6 Gravitational force, G between two objects of mass m1 and m2 is directly proportional
to products of the masses, i.e.

G ∝ m1m2 (1.28)

Definition 1.16

♣

Let two variables are proportional to each other such that if one of them increases or decreases
than other one decreases or increases according than they are called inversely proportional to
each other.

Example 1.7 Gravitational force, G between two objects of distance d is inversely proportional to the
square of the distance, i.e.

G ∝ 1

d2
(1.29)

K Chapter 1 Exercisek

1. For practicing problems follow Engineering Mathematics - John Bird- Sixth Edition.
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Chapter 2 The Derivative of A Function

Introduction

h Geometric Interpretation of Derivative
h Physical Interpretation of Derivative

h Exercise

2.1 Geometric Interpretation of Derivative

Recap

Equation of a straight line of slope m and cut the y-axis at c is given by

y = mx+ c. (2.1)

Equation of a straight line passing through the points P (x1, y1), and Q(x2, y2) is

y − y1 =
y2 − y1

x2 − x1

(x− x1), (2.2)

which is also called secant line.
Comparing equations (2.1)-(2.2), can be easily shown that

m =
y2 − y1

x2 − x1

. (2.3)

2.1.1 Tangent Problem

Let P (x1, y1), and Q(x2, y2) be two points on the curve y = f(x) = 1/x, where P is fixed and
Q is moving towards P . Then we can write the secant equation PQ,

y − y1 =
y2 − y1

x2 − x1

(x− x1). (2.4)

As the point Q approaches P , we say that the secant line PQ is the tangent of y at P .

Definition 2.1 (Tangent)

♣

Let P be a fixed point on a curve y = f(x), and Q be a near by point then the secant line PQ
is said to be a tangent line of y at P, when Q approaches to P , i.e.

lim
P→Q

Secant line PQ = tangent at P of y. (2.5)

From eq. (2.4) the slope of the secant line PQ is

m =
y2 − y1

x2 − x1

(2.6)

Now as Q → P , x2 → x1 i.e ∆x = x2 − x1 → 0. Also let ∆f = f(x2) − f(x1) = y2 − y1, then
taking limit on both side of eq. (2.6), we have

lim
∆x→0

m = lim
∆x→0

y2 − y1

x2 − x1

= lim
∆x→0

f(x2)− f(x1)

∆x
= lim

∆x→0

∆f

∆x
=
dy

dx
. (2.7)



2.2 Physical Interpretation of Derivative

Tangent

Secant

P (x1, f(x1))

Q (x2, f(x2))

∆x

∆f

Figure 2.1: Geometric interpretation of derivative.

Definition 2.2 (Derivative)

♣The derivative of a function f(x) at the point P is the slope of the tangent at the point P .

The basic problem of differential calculus is the problem of tangents: Calculate the slope of the
tangent line to the graph at a given point P.

Using eq. (2.7) we can calculate the derivative of y at (x1, y1) as
dy

dx
= lim

∆x→0
m = lim

∆x→0

f(x2)− f(x1)

∆x
= lim

∆x→0

1

∆x

[
1

x1 + ∆x
− 1

x1

]
= lim

∆x→0

1

∆x

[
x1 − x1 −∆x

x1 (x1 + ∆x)

]
= − lim

∆x→0

[
1

x1 (x1 + ∆x)

]
∴
dy

dx
= − 1

x2
1

.

Now the equation of tangent line at P (x1, y1) is given by

y − y1 = − 1

x2
1

(x− x1) (2.8)

This line cut the Y -axis at

x = y1x
2
1 + x1 = 2x1 [y = 1/x] (2.9)

Similarly, this line cut the X-axis at

y = y1 −
1

x2
1

(0− x1) = y1 + y1 = 2y1. [y = 1/x] (2.10)

Now area of the triangle form by the tangent and axes is

Area =
1

2
(2x1 − 0) (2y1 − 0) = 2. (2.11)

2.2 Physical Interpretation of Derivative

K Chapter 2 Exercisek

1. Define tangent of a curve.
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Chapter 2 : The Derivative of A Function

2. Define derivative in terms of tangent.
3. Show that the area of the triangle form by the tangent of y = 1/x and the axes is 2.
4. Give geometric interpretation of derivative.
5. Give physical interpretation of derivative.
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Chapter 3 Limits

Introduction

h Introduction to Limits
h Limits of a Function
h Infinite Limits
h Limits at Infinity
h Fundamental Theorems of Limits

h Some Important Limits
h How to Find Limits?
h Application of Limit
h Exercise

3.1 Introduction to Limits

Definition 3.1

♣

A constant a is said to be a limit of the variable x, if

0 < |x− a| < δ,

where δ is pre-assigned positive quantity as small as we please. Symbolically, it is denoted by

x→ a or, limx = a,

we say that ”x approaches a” or, ”x tends to a”.

�
Note x→ a never implies that x = a.

When x approaches a but always remains smaller than a, we say that x approaches a from the
left on the real axis and we write, x→ a−.

Similarly, when x approaches a but always remains greater than a, we say that x approaches a
from the right on the real axis and we write, x→ a+.

3.2 Limits of a Function

Definition 3.2

♣

We say that l is the limit of f(x), i.e.

lim
x→a

f(x) = l,

which means that f(x) is very close to the fixed number l, whenever x is very close to a. If there
is no real number l with this property, we say that f(x) has no limit as x approaches a, or that
lim
x→a

f(x) does not exist.

This definition does not tell us that how much close lim
x→a

f(x) to l, or, x to a. So, we need more
precise definition called (δ, ε) definition of limit.



3.2 Limits of a Function

x a

f(x)

l

Figure 3.1: As x approaches a, f(x) approaches l.

Definition 3.3 ((δ, ε) definition)

♣

For each positive number ε there exists a positive number δ with the property that

|f(x)− l| < ε

∀x ∈ Df that satisfies the inequality

0 < |x− a| < δ.

a− δaa+ δ

l
f(x)− ε
f(x) + ε

Figure 3.2: As x approaches a, f(x) approaches l.

�
Note

1. we are concerned only with the behavior of f(x) near the point x = a, and not at all with what
happens at x = a.

2. a may or may not belong to Df .
Example 3.1 Prove that

lim
x→2

(3x+ 4) = 10

by (δ, ε) definition of a function.
Solution Let us consider an arbitrary positive number δ > 0 such that

|3x+ 4− 10| < ε =⇒ |3x− 6| < ε =⇒ |x− 2| < ε

3
=⇒ |x− 2| < δ,

18
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where δ = ε
3
. That is

lim
x→2

(3x+ 4) = 10.

Example 3.2 Prove that

lim
x→a

x2 − a2

x− a
= 2a

by (δ, ε) definition of a function.

Solution Let us consider an arbitrary positive number δ > 0 such that

|x
2 − a2

x− a
− 2a| < ε

=⇒ |(x+ a)(x− a)

x− a
− 2a| < ε

=⇒ |x+ a− 2a| < ε

=⇒ |x− a| < δ,

where δ = ε. That is
lim
x→a

x2 − a2

x− a
= 2a.

The definition 3.2 can also be written as follows
Definition 3.4

♣

We say that l is the limit of f(x), i.e.

lim
h→0

f(x+ h) = l,

which means that f(x+ h) is very close to the fixed number l, whenever h is very close to 0. If
there is no real number l with this property, we say that f(x+ h) has no limit as h approaches
0, or that lim

h→0
f(x+ h) does not exist.

Definition 3.5

♣

Let f be a function and S ⊂ Df such that any number x ∈ S is less than a then for each positive
number ε there exists a positive number δ with the property that

|f(x)− l1| < ε

∀x ∈ S that satisfies the inequality

0 < |x− a| < δ.

We say that l1 is the left hand limit of f(x) as x→ a and we write

lim
x→a−

f(x) = l1,

Definition 3.6
Let f be a function and S ⊂ Df such that any number x ∈ S is greater than a then for each
positive number ε there exists a positive number δ with the property that

|f(x)− l2| < ε

19



3.2 Limits of a Function

♣

∀x ∈ S that satisfies the inequality

0 < |x− a| < δ.

We say that l2 is the right hand limit of f(x) as x→ a and we write

lim
x→a+

f(x) = l2,

When both left and right hand limit of f(x) exist at a, we say that limit of f(x) exist at a.
Moreover, if l1 = l2 = l then it is equal to l. When lim

x→a
f(x) = f(a) then the function is said to be

continuous at a.
Example 3.3 Investigate the function

f(x) =


1 + 2x, −1

2
≤ x < 0,

1− 2x, 0 ≤ x < 1
2
,

−1 + 2x, x > 1
2
,

at x = 0 and x = 1
2
.

Solution For x = 0,
lim
h→0−

f(0 + h) = lim
h→0−

1 + 2h = 1.

lim
h→0+

f(0 + h) = lim
h→0+

1− 2h = 1.

and f(0) = 1− 2 · 0 = 1. That is
lim
h→0

f(0) = 1 = f(0).

Hence, f(x) is continuous.
For x = 1

2
,

lim
h→0−

f

(
1

2
+ h

)
= lim

h→0−
1− 2

(
1

2
+ h

)
= 0.

lim
h→0+

f

(
1

2
+ h

)
= lim

h→0−
−1 + 2

(
1

2
+ h

)
= 0.

and
lim
h→0−

f

(
1

2
+ h

)
= lim

h→0+
f

(
1

2
+ h

)
= 0.

That is
lim
h→0

f(0) = 0.

Example 3.4 Evaluate
lim
x→0

x

|x|
.

Solution
lim
h→0−

f(x− h) = lim
h→0−

x

−x
= −1.

lim
h→0+

f(x+ h) = lim
h→0+

x

x
= 1.
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1

−1

Figure 3.3: Limit of x/|x| at 0.

As it found that lim
h→0−

f(x− h) 6= lim
h→0+

f(x+ h) and also evident from the Figure 3.3. Hence, it
does not have any limit at x = 0.

3.3 Infinite Limits

If a variable x assumes all positive (negative) values and increases (decreases) without limit
such that it is greater (less) than any positive (negative) number, however big (small) which we may
imagine, x is said to tends to infinity (minus infinity) and symbolically it is written as x→ −∞.
Example 3.5 Evaluate

(a) lim
x→0

1
x
,

(b) lim
x→0

1
x2 ,

(c) lim
x→0
− 1
x2 .

Solution

1

−1

(a) Limit of 1/x at 0.

1

−1

(b) Limit of 1/x2 at 0.

1

−1

(c) Limit of −1/x2 at 0.
Figure 3.4: Infinite limits.

(a) Let f(x) = 1
x
.

lim
x→0−

f(x) = lim
x→0−

1

x
= −∞.

lim
x→0+

f(x) = lim
x→0+

1

x
=∞.
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3.4 Limits at Infinity

As it found that lim
x→0−

f(x) 6= lim
x→0+

f(x) and also evident from the Figure 3.4a. Hence, it does
not have any limit at x = 0.

(b) Let f(x) = 1
x2 .

lim
x→0−

f(x) = lim
x→0−

1

x2
=∞.

lim
x→0+

f(x) = lim
x→0+

1

x2
=∞.

As it found that lim
x→0−

f(x) = lim
x→0+

f(x) =∞ and also evident from the Figure 3.4b. Therefore

limit exists and lim
x→0

1
x2 =∞.

(c) Let f(x) = − 1
x2 .

lim
x→0−

f(x) = lim
x→0−

− 1

x2
= −∞.

lim
x→0+

f(x) = lim
x→0+

− 1

x2
= −∞.

As it found that lim
x→0−

f(x) = lim
x→0+

f(x) = −∞ and also evident from the Figure 3.4c. Therefore

limit exists and lim
x→0
− 1
x2 = −∞.

Example 3.6 Evaluate

lim
x→2

3

(x− 2)2
.

Solution

lim
x→2

3

(x− 2)2
= 3 lim

h→0

1

(2 + h− 2)2
= 3 lim

h→0

1

h2
=∞. [Using Ex. 3.5b.]

3.4 Limits at Infinity

Let a be any positive numbers, that f(x) is defined for all numbers x ≥ a. We say that f(x)

approaches l as x tends to∞, and we write

lim
x→∞

f(x) = l.

If the following condition is satisfied. Given any ε > 0, there exists a positive number C, such that
whenever x > C, we have

|f(x)− l| < ε.

Again, let a be any negative numbers, that f(x) is defined for all numbers x ≤ a. We say that
f(x) approaches l as x tends to −∞, and we write

lim
x→−∞

f(x) = l.

If the following condition is satisfied. Given any ε > 0, there exists a positive number C, such that
whenever x < −C, we have

|f(x)− l| < ε.

Example 3.7 Evaluate

lim
n→0

n2 + n− 1

3n2 + 1
.
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Solution

lim
n→∞

n2 + n− 1

3n2 + 1
= lim

n→∞

1 + 1
n
− 1

n2

3 + 1
n2

=
1

3
.

Example 3.8 Show that

lim
x→∞

sinx

x
= 0. (3.1)

Solution We have, | sinx| ≤ 1, for any values of x. Hence,∣∣∣∣sinxx
∣∣∣∣ (3.2)

3.5 Fundamental Theorems of Limits

Theorem 3.1

♥
lim
x→a

x = a.

Corollary 3.1

♥

If c is a constant then
lim
x→a

c = c.

Theorem 3.2

♥
lim
x→a
{f(x)± g(x)} = lim

x→a
f(x)± lim

x→a
g(x).

Theorem 3.3

♥
lim
x→a
{f(x)g(x)} = lim

x→a
f(x) lim

x→a
g(x).

Corollary 3.2

♥

If c is a constant then
lim
x→a

cf(x) = c lim
x→a

f(x).

Theorem 3.4

♥

If lim
x→a

f(x) 6= 0 then

lim
x→a

1

f(x)
=

1

lim
x→a

f(x)
.
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Corollary 3.3

♥

If lim
x→a

g(x) 6= 0 then

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
.

Theorem 3.5

♥

If
lim
x→a

f(x) = t and lim
u→t

g(u) = g(t)

i.e. if g(u) is contentious at u = t, then

lim
x→a

g (f(x)) = g
(

lim
x→a

f(x)
)
.

Example 3.9 If
lim
x→a

f(x) = l,

then
lim
x→a

sin (f(x)) = sin
(

lim
x→a

f(x)
)

= sin l.

lim
x→a

e(f(x)) = e

(
lim
x→a

f(x)
)

= el.

lim
x→a

(f(x))n =
(

lim
x→a

f(x)
)n

= ln.

Definition 3.7 (Limits of a Sequence)

♣

A number l is the limit of a sequence a1, a2, . . . , an or,

lim
x→∞

an = l,

if for every ε > 0, there is a number N such that

|an − l| < ε

when n ≥ N.

3.6 Some Important Limits

Example 3.10 Prove that
lim
θ→0

sin θ

θ
= 1.

Solution
Let the tangents at P and Q meets at T . PQ is a chord of the circle and R is the middle point.

So, we have,
∠ROQ = ∠ROP = θ.
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O

P

Q

R
T

θ

Figure 3.5: Limit of sin θ
θ

at 0.

Also,
∠TPR = ∠TQR = θ.

Now, we have,

PQ <
_

PQ < PT +QT

=⇒ 2PR < 2θ < 2PT

=⇒ PR < θ < PT

=⇒ PR

OP
<

θ

OP
<
PT

OP
=⇒ sin θ < θ < tan θ

=⇒ 1 <
θ

sin θ
<

1

cos θ

=⇒ cos θ <
sin θ

θ
< 1

=⇒ lim
θ→0

cos θ < lim
θ→0

sin θ

θ
< lim

θ→0
1

=⇒ 1 < lim
θ→0

sin θ

θ
< 1

Hence,
lim
θ→0

sin θ

θ
= 1.

Example 3.11 Prove that
lim
x→0

(1 + x)
1
x = e

Solution Expanding binomially,

(1 + x)
1
x = 1 +

1

x
x+

(1/x) (1/x− 1)

2!
x2 + · · ·+ = 1 + 1 +

(1− x)

2!
+

(1− x) (1− 2x)

3!
+ . . .

lim
x→0

(1 + x)
1
x = 1 +

1

1!
+

1

2!
+

1

3!
+ · · · = e.

Example 3.12 Prove that

lim
x→∞

(
1 +

1

x

)x
= e (3.3)

Solution Expanding binomially,(
1 +

1

x

)x
= 1 + x

1

x
+
x (x− 1)

2!

1

x2
+ · · ·+ = 1 + 1 +

(1− 1/x)

2!
+

(1− 1/x) (1− 2/x)

3!
+ . . .
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lim
x→∞

(
1 +

1

x

)x
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · · = e.

Example 3.13 Prove that

lim
x→0

{
1

x
ln (1 + x)

}
= 1

Solution

lim
x→0

{
1

x
ln (1 + x)

}
= lim

x→0

{
ln (1 + x)

1
x

}
= ln

{
lim
x→0

(1 + x)
1
x

}
= ln e = 1.

Example 3.14 Prove that
lim
x→0

ax − 1

x
= ln a

Solution Let

ax − 1 = y

=⇒ x ln a = ln(1 + y)

=⇒ x =
ln(1 + y)

ln a
.

Now,
ax − 1

x
=

y ln a

ln(1 + y)
=

ln a

1/y ln(1 + y)
=

ln a

ln(1 + y)1/y

Taking limit,

lim
x→0

ax − 1

x
= lim

y→0

ln a

ln(1 + y)1/y
= ln a lim

y→0

1

ln(1 + y)1/y
= ln a.

Example 3.15 Prove that
lim
x→0

ex − 1

x
= 1

Solution Similar as example 3.14.

Example 3.16 Prove that
lim
x→a

xn − an

x− a
= nan−1,

for all rational values of n, provided a is positive.

Solution Case I: When n is positive integer.

lim
x→a

xn − an

x− a
= lim

x→a

(x− a) (xn−1 + xn−2a+ · · ·+ an−1)

x− a
= lim

x→a

(
xn−1 + xn−2a+ · · ·+ an−1

)
= nan−1. (3.4)
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Case II: When n is negative integer. Let n = −m, where m being a positive integer and a 6= 0.

lim
x→a

xn − an

x− a
= lim

x→a

x−m − a−m

x− a

= lim
x→a

1

x− a

(
1

xm
− 1

am

)
= lim

x→a

−1

amxm

(
xm − am

x− a

)
= lim

x→a

−1

amxm
lim
x→a

(
xm − am

x− a

)
=
−1

a2m
mam−1 [Using (3.4).]

= (−m)a(−m)−1 = nan−1.

Example 3.17 Prove that

lim
x→0

(1 + x)n − 1

x
= n.

Solution

lim
x→0

(1 + x)n − 1

x

=⇒ lim
x→0

1 + nx+ x2 n(n−1)
2!

+ · · · − 1

x
= n

3.7 How to Find Limits?

3.7.1 Easy Limits

Example 3.18
lim
x→0

4x2 + 7 = 7.

3.7.2 Limits of the form 0/0

Example 3.19

lim
x→a

x4 − a4

x− a
= lim

x→a

(x− a)(x3 + ax2 + a2x+ a3)

x− a
= lim

x→a
(x3 + ax2 + a2x+ a3) = 4a3.

Example 3.20

lim
x→0

√
1 + x− 1√

x
= lim

x→0

(√
1 + x− 1

) (√
1 + x+ 1

)
√
x
(√

1 + x+ 1
) = lim

x→0

1 + x− 1
√
x
(√

1 + x+ 1
) = lim

x→0

√
x(√

1 + x+ 1
) = 0.

Example 3.21

lim
x→0

1− cosx

x
= lim

x→0

2 sin2 x
2

x
== lim

x→0
sin

x

2
lim
x→0

sin x
2

x
2

= 0.
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3.7.3 Limits of the form∞/∞

Example 3.22

lim
n→∞

n2 + n− 1

3n2 + 1
= lim

n→∞

1 + 1
n
− 1

n2

3 + 1
n2

=
1

3
.

Example 3.23

lim
x→∞

sinx

x
= lim

x→∞
sinx lim

x→∞

1

x
= 0.

Example 3.24

lim
x→0

cos
1

x
= cos

(
lim
x→0

1

x

)
.

Example 3.25

lim
x→∞

3x − 3−x

3x + 3−x
= lim

x→∞

3x−3−x

3x

3x+3−x

3x

= lim
x→∞

1− 3−2x

1 + 3−2x
= 1.

3.7.4 L’Hôpital’s Rule

Indeterminate forms, such as 0
0
, ∞∞ , 1∞, 00,∞0, 0 · ∞, and∞−∞, can sometimes be evaluated

using l’Hôpital’s (pronounce as Lopital) rule.

Definition 3.8

♣

L’Hôpital’s rule states that for functions f(x) and g(x) which are differentiable on an open
interval I except possibly at a point c contained in I , if lim

x→c
f(x) = lim

x→c
g(x) = 0, or, ±∞, and

g′(x) 6= 0, for all x ∈ I with x 6= c, and lim
x→c

f ′(x)
g′(x)

exists, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 3.26 Evaluate

lim
x→0

(
1

x2
− 1

sin2 x

)
Solution

lim
x→0

(
1

x2
− 1

sin2 x

)
= lim

x→0

sin2 x− x2

x2 sin2 x

= lim
x→0

2 sinx cosx− 2x

2x sin2 x+ 2x2 sinx cosx
[Applying L’Hôpital’s rule]

= lim
x→0

sin 2x− 2x

x (1− cos 2x+ x sin 2x)

= lim
x→0

2 (cos 2x− 1)

(1− cos 2x+ x sin 2x) + x (3 sin 2x+ 2x cos 2x)
[Applying L’Hôpital’s rule]

= lim
x→0

−4 sin 2x

2 (3 sin 2x+ 2x cos 2x) + 4x (2 cos 2x− x sin 2x)
[Applying L’Hôpital’s rule]

= lim
x→0

−2 sin 2x

(3 sin 2x+ 2x cos 2x) + 2x (2 cos 2x− x sin 2x)
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= lim
x→0

−4 cos 2x

6 (2 cos 2x− x sin 2x) + 4x (−3 sin 2x+ x cos 2x)
[Applying L’Hôpital’s rule]

=
−4

6(2− 0) + 0
= −1

3

3.8 Application of Limits

K Chapter 3 Exercisek

1. Define following
(a). Limit of a constant.
(b). Limit of a function.
(c). (δ, ε) definition of limit of a function.
(d). Right hand and left hand limit.
(e). L’Hôpital’s rule.

2. When a function has a limit?
3. Can a function has two limits at a single point within a given interval? or at two points?
4. By (δ, ε) definition prove that

lim
x→a

x2 − a2

x− a
= 2a.

5. By (δ, ε) definition prove that

lim
x→2

x3 − 3x+ 7 = 9.

6. Show that
(a). lim

x→0

√
1+x−1√
x

= 0

(b). lim
x→a

x4−a4

x−a = 4a3

(c). lim
x→0

1−cosx
x

= 0

(d). lim
n→∞

n2+n−1
3n2+1

= 1
3

(e). lim
x→0

tanx
x

= 1

(f). lim
x→0

√
1+x−1
x

= 1
2

(g). sin 5x
sin 6x

= 5
6

7. Find the following limits
(a). lim

x→∞
3x−3−x

3x+3−x
, Ans. 1.

(b). lim
x→0

cos 1
x
, Ans. Does not exist.

(c). lim
x→∞

sinx
x

, Ans. 0.
8. Using L’Hôpital’s rule find the following limits

(a). lim
x→0

(
1
x2 − 1

sin2 x

)
Ans. −1

3
.

(b). lim
θ→π

4

√
2−cos θ+sin θ

(4θ−π)2 Ans. 0.

(c). lim
x→1

(
x
x−1
− 1

lnx

)
, Ans. 1

2
.
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Chapter 4 Continuity

Introduction

h Continuity
h Cauchy’s Definition of Continuity
h Classification of Discontinuity
h Properties of Continuous Functions

h Continuity of Some Elementary Func-
tions

h Differentiability of a Function
h Exercise

4.1 Continuity

Definition 4.1

♣

A function f(x) is said to be continuous at x = a, if f is defined at x = a and lim
x→a

f(x) = f(a).
If any of the above conditions is not satisfied then f(x) is said to have a discontinuity at x = a.

Example 4.1 Prove that the function f(x) = sin x is continuous for every values of x.
Solution sinx is defined for all values of x. Therefore, Df = R = (−∞,∞). For any x ∈ R,

lim
h→0

f(x+ h) = lim
h→0

sin(x+ h) = lim
h→0

(sinx cosh+ cosx sinh)

= sin x lim
h→0

cosh+ cosx lim
h→0

sinh = sinx = f(x).

Hence, f(x) = sinx is continuous for all real values of x.
Example 4.2 Discuss the continuity of the function f(x) = 1

3−e
1
x

at x = 0.
Solution Since 1

0
is undefined, therefore f(0) is undefined. Hence f(x) is discontinuous at x = 0.

4.2 Cauchy’s Definition of Continuity

Definition 4.2

♣

A function f(x) is continuous at x = a, if f(a) is defined and for a small positive number ε
there is a positive number δ can be always determined such that

|f(x)− f(a)| < ε

where

|x− a| ≤ δ.

4.3 Classification of Discontinuity

A function f(x) is said to be discontinuous for x = a if f(a) is not defined or limx→ 0f(x)

does not exist.



4.3 Classification of Discontinuity

The different type of discontinuous are
1. Ordinary discontinuity or, discontinuity of the first kind,
2. Discontinuity of the second kind,
3. Mixed discontinuity,
4. Removal discontinuity,
5. Infinite discontinuity, and
6. Oscillatory discontinuity.

4.3.1 Ordinary Discontinuity or, Discontinuity of the First Kind

Definition 4.3

♣

If the function f(x) has finite limit but

lim
h→0−

f(a− h) 6= lim
h→0+

f(a− h) 6= f(a)

then the function is said to have ordinary discontinuity or, discontinuity of the first kind at x = a.

4.3.2 Discontinuity of the Second Kind

Definition 4.4

♣

If the limits of f(x), lim
h→0−

f(a− h) and lim
h→0+

f(a + h) do not exist for x = a then the function
is said to have discontinuity of the second kind at x = a.

4.3.3 Mixed Discontinuity

Definition 4.5

♣

If one of the limits of f(x) exists then the discontinuities of the function f(x) at x = a is called
mixed discontinuity.

That is if lim
h→0−

f(a− h) = f(a) but lim
h→0+

f(a+ h) 6= f(a), then f(x) is continuous on the right
but it has a ordinary discontinuity at the left for x = a.

Similarly, if lim
h→0+

f(a + h) = f(a) but lim
h→0−

f(a − h) 6= f(a), then f(x) is continuous on the
left but it has a ordinary discontinuity at the right for x = a.
Example 4.3 Examine the continuity of the function f(x) at x = 3

2
, where

f(x) =

3− 2x 0 ≤ x < 3
2

−3− 2x x ≥ 3
2
.

Solution Clearly, 3
2
∈ Df and f(3

2
) = −6.
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Chapter 4 : Continuity

Again,

lim
h→0+

f(
3

2
+ h) = lim

h→0+

(
−3− 2

(
3

2
+ h

))
= −6

lim
h→0−

f(
3

2
− h) = lim

h→0−

(
3− 2

(
3

2
− h
))

= 0.

∴ lim
h→0+

f

(
3

2
+ h

)
= f

(
3

2

)
6= lim

h→0−
f

(
3

2
− h
)

Hence, f(x) has a discontinuity at left for x = 3
2
.

4.3.4 Removal Discontinuity

Definition 4.6

♣

If lim
h→0−

f(a − h) = lim
h→0+

f(a + h) 6= f(a) then the function f(x) is said to have a removable
discontinuity for x = a.

Example 4.4 Show that the function

f(x) =

x2−a2

x−a , x 6= a,

0, x = a,

has a removable discontinuity at x = a.
Solution We have a ∈ Df and f(a) = 0.

Again

lim
h→0−

f(a− h) = lim
h→0−

(a− h)2 − a2

a− h− a
= lim

h→0−

−2ah+ h2

−h
= 2a

lim
h→0+

f(a+ h) = lim
h→0+

(a+ h)2 − a2

a+ h− a
= lim

h→0+

2ah+ h2

h
= 2a

∴ lim
h→0−

f(a− h) = lim
h→0+

f(a+ h) 6= f(a).

Hence, f(x) is discontinuous at x = a, and f(x) has a removable discontinuity at x = a.

4.3.5 Infinite Discontinuity

Definition 4.7

♣

If both the limits of f(x) are infinite, then the function f(x) has an infinite discontinuity at
x = a.

If lim
h→0−

f(a−h) and lim
h→0+

f(a+h) tend to±∞, then the function f(x) has an infinite discontinuity
at x = a.
Example 4.5 Show that the function

f(x) =
x− 2

x− 1
has an infinite discontinuity at x = 1.
Solution Since f(1) = −1

0
is undefined, 1 /∈ Df , therefore f(x) is discontinuous at x = 1.
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Now

lim
h→0

∣∣∣∣−1 + h

h
− −1− h
−h

∣∣∣∣ = lim
h→0

∣∣∣∣−2

h

∣∣∣∣ =∞.

Hence, the discontinuity at x = 1 is infinite.

4.3.6 Oscillatory Discontinuity

Definition 4.8

♣

A function f(x) having a discontinuity at a point x = a may oscillate finitely or does not tend
to finite limit or to ±∞ as x tends to ∞, we say that f(x) has an oscillatory discontinuity at
x = a.

Example 4.6 Discuss the continuity of sin
(

1
x

)
.

Solution sin
(

1
x

)
oscillates between −1 and 1 and more rapidly as x approaches 0 from either sides.

f(x) oscillates finitely at x = 0.

4.4 Properties of Continuous Functions

1. The sum or difference of two continuous function is a continuous function over the intersection
at their domain.

2. The product of two continuous function is a continuous function over the intersection at their
domain.

3. The quotient of two continuous function is a continuous function over the intersection at their
domain, if the denominator is not zero anywhere in it.

4. If a function is continuous in a closed interval, it is bounded in the interval.
5. A function which is continuous in a closed interval attains at least once its least upper and

greatest lower bound.
6. A continuous function which has opposite sign at two points meets its domain vanishes at least

one between these points.
7. A continuous function f(x), in the interval (a, b), assumes at least once every values between
f(a) and f(b), it being supposed that f(a) 6= f(b).

8. The converse of this theorem is not true i.e, a function f(x) which takes all values between f(a)

and f(b) is not necessarily continuous in the interval (a, b).
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4.5 Continuity of Some Elementary Functions

Theorem 4.1

♥

The function

f(x) = xn

is continuous for all values of x, when n is any rational number, except at x = 0, when n is
negative.

Proof Let us investigate the continuity of the function at x = a.

lim
h→0+

f(a+ h) = lim
h→0+

(a+ h)n = lim
h→0+

an(1 + n

(
h

a

)
+ . . . ) = an.

lim
h→0−

f(x− h) = lim
h→0−

(a− h)n = lim
h→0−

an(1− n
(
h

a

)
+ . . . ) = an.

When n is negative then let n = −m, where m is positive. Then xn = x−m, which is undefined
for x = 0.

Hence, f(x) = xn is continuous for all values of x, except x = 0, when n is negative.

Corollary 4.1

♥Polynomials are continuous functions.

Theorem 4.2

♥

Rational algebraic functions R(x) = P (x)
Q(x)

, where Q(x) 6= 0 is continuous functions if P (x) and
Q(x) are continuous for all values of x.

Theorem 4.3

♥Exponential function ex is continuous for all real values of x.

Theorem 4.4

♥Logarithm function lnx is continuous for all positive values of x, i.e. x > 0.

4.6 Differentiablity of a Function

Definition 4.9
A function f(x) is said to be differentiable at x = a, if a + h, and a belong to the domain of f
as h→ 0, and

lim
h→0

f(a+ h)− f(a)

h
exists, we write

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,
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4.6 Differentiablity of a Function

♣provided the limit exists.

If

lim
h+→0

f(a+ h)− f(a)

h
= lim

h→0−

f(a− h)− f(a)

−h
or,

lim
h→0

f(a+ h)− f(a)

h
exists, then the function f(x) is differentiable at x = a.

Theorem 4.5

♥Every finitely derivable function is continuous.

Proof Let f(x) be differentiable at x = a i.e,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
lim
h→0

(f(a+ h)− f(a)) = lim
h→0

hf ′(a) = 0

lim
h→0

f(a+ h) = f(a).

Hence, f(x) is continuous at x = a.

The converse of this theorem is not necessarily is true, i.e. a function may be continuous for a
value of the variable in an interval but derivative at this point may not exist.

Example 4.7 Consider the function

f(x) =

x, 0 ≤ x < 1
2

(1− x), 1
2
≤ x < 1.

Is the function continuous at x = 1
2
? Is it differentiable at x = 1

2
? Draw the graph.

Solution x = 1
2
∈ Df , also f

(
1
2

)
= 1− 1

2
= 1

2
.

lim
h0−

f
(

1
2
− h
)

= lim
h0−

(
1
2
− h
)

= 1
2
,

lim
h0+

f
(

1
2

+ h
)

= lim
h0+

(
1
2

+ h
)

= 1
2
.

Thus

lim
h0−

f

(
1

2
− h
)

= lim
h0+

f

(
1

2
+ h

)
= f

(
1

2

)
.

Hence the function f(x) is continuous at x = 1
2
.

Again

lim
h→0−

f( 1
2
−h)−f( 1

2)
−h = lim

h→0−

1
2
−h− 1

2

−h = 1,

lim
h→0+

f( 1
2

+h)−f( 1
2)

h
= lim

h→0+

1− 1
2
−h− 1

2

h
= −1,

Thus right hand limit and left hand limit are not equal. Hence f ′(1
2
) does not exit, i.e. f(x) is not
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differentiable at x = 1
2
.

Example 4.8 A function f(x) is defined in the following way.

f(x) =


0, 0 ≤ x < 3,

4 x = 3,

5 3 < x ≤ 4

Investigate the continuity and differentiability at x = 3

Solution x = 3 ∈ Df , also f (3) = 4.

lim
h0−

f (3− h) = 0,

lim
h0+

f (3 + h) = 5.

Thus

lim
h→0−

f (3− h) 6= lim
h→0+

f (3 + h) 6= f(3).

Hence the function f(x) is discontinuous at x = 3.

Again

lim
h→0−

f(3−h)−f(3)
−h = lim

h→0−

0−4
−h =∞,

lim
h→0+

f(3+h)−f(3)
h

= lim
h→0+

5−4
h

=∞,

Lf ′(3) 6= Rf ′(3), that is f ′(3) does not exists.

Hence f ′(3) is not differentiable at x = 3.

Example 4.9 If

f(x) =


1, x < 0,

1 + sin x, 0 ≤ x < π
2

2 +
(
x− π

2

)2
, x ≥ π

2

Discuss the continuity and differentiability of the function at x = π
2
.

Solution x = π
2
∈ Df , also f

(
π
2

)
= 2 +

(
π
2
− π

2

)2
= 2.

lim
h→0−

f
(
π
2
− h
)

= lim
h→0−

(
1 + sin

(
π
2
− h
))

= 1 + lim
h→0−

cosh = 2,

lim
h→0+

f
(
π
2

+ h
)

= lim
h→0+

(
2 +

(
π
2

+ h− π
2

)2
)

= 2 + lim
h→0+

h2 = 2.

Thus

lim
h→0−

f
(π

2
− h
)

= lim
h→0+

f
(π

2
+ h
)

= f
(π

2

)
.

Hence the function f(x) is continuous at x = π
2
.

Again

lim
h→0−

f(π2−h)−f(
π
2 )

−h = lim
h→0−

1+cosh−2
−h = lim

h→0−

1−cosh
h

= 0,

lim
h→0+

f(π2 +h)−f(π2 )
h

= lim
h→0+

2+h2−2
h

= lim
h→0+

h2

h
= 0.

Lf ′
(
π
2

)
= Rf ′

(
π
2

)
, that is f ′

(
π
2

)
exists.
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Chapter 4 Exercise

Hence f ′
(
π
2

)
is differentiable at x = π

2
.

K Chapter 4 Exercisek

1. Define following.
(a). Continuous function
(b). Discontinuous function
(c). Cauchy definition of discontinuity

2. Show that the function

f(x) =

 x
|x| , x 6= 0,

0 x = 0

is discontinuous at x = 0, draw the function.
3. Show that f(x) = cos π

x
has a discontinuity at x = 0.

4. A function defined as follows:

f(x) =

5x− 4, 0 < x ≤ 1

4x2 − 3x 1 < x < 2

Discuss whether the function is continuous at x = 1.
5. A function defined as follows:

f(x) =

1 + sin x, 0 ≤ x ≤ π
2
,

2 +
(
x− π

2

)2
, π

2
≤ x ≤ ∞

Discuss the continuity and differentiability of the function at x = π
2
.

6. A function defined as follows:

f(x) =


1
2

(b2 − a2) , 0 < x ≤ a,

1
2
b2 − x2

6
− a3

3x
, a < x ≤ b,

1
3

(b3−a3)
x

, x > b.

Prove that f(x) and f ′(x) are continuous but f ′′(x) is discontinuous.
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Chapter 5 Computation of Derivatives

Introduction

h Derivatives of Polynomials
h The Product and Quotient Rules
h Composite Functions and the Chain Rule
h Derivatives of Exponential
h Derivatives of Logarithm
h Trigonometric Derivatives
h Derivatives of Inverse Trigonometric

Function
h Logarithmic Differentiation
h Derivatives of Hyperbolic Function
h Derivatives of Inverse Hyperbolic Func-

tion
h Derivatives of Parametric Equation
h Implicit Functions

5.1 Derivatives of Polynomials

As we know, the process of finding the derivative of a function is called differentiation. We
already know the definition of derivatives

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (5.1)

We have seen that this approach is rather slow and clumsy. Our purpose in the present chapter is to
develop a small number of formal rules that will enable us to differentiate large classes of functions
quickly, by purely mechanical procedures.

Theorem 5.1

♥

If c is a constant then
dc

dx
= 0. (5.2)

Proof Let y = f(x) = c, where c is a constant.
dy

dx
= lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c
h

= 0.

Example 5.1
d5

dx
= 0;

d10!

dx
= 0.

Theorem 5.2

♥
d

dx
xn = nxn−1. (5.3)



5.1 Derivatives of Polynomials

Proof If n is positive and y = f(x) = xn then
dy

dx
= = lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)n − xn

h

= xn lim
h→0

(1 + h
x
)n − 1

h

= xn lim
h→0

(
1 + nh

x
+ n(n−1)

2

(
h
x

)2
+ . . .

)
− 1

h

= xn lim
h→0

(
n

x
+
n(n− 1)

2

(
h

x2

)
+ . . .

)
∴

d

dx
xn = nxn−1.

Though the theorem 5.2 is proved for integer, it is true for all rational number.
Example 5.2

dx2

dx
= 2x;

dx4

dx
= 4x3.

Theorem 5.3

♥

If u(x), and v(x) are two derivable function of x then
d(u± v)

dx
=
du

dx
± dv

dx
. (5.4)

Proof Let y = f(x) = u(x)± v(x) then
dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

(u(x+ h)± v(x+ h))− (u(x)± v(x))

h

= lim
h→0

u(x+ h)− u(x)

h
± lim

h→0

v(x+ h)− v(x)

h

∴
d(u± v)

dx
=

du

dx
± dv

dx
.

Above theorem 5.3 can be extended for several variables.
Corollary 5.1

♥
d

dx
(u1 ± u2 ± · · · ± un) =

du1

dx
± du2

dx
± · · · ± dun

dx
. (5.5)

Definition 5.1

♣

A polynomial in x is a sum of constant multiples of powers of x in which each exponent is zero
or a positive integer:

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0

where n is an integer (n > 0), a0, a1, a2, . . . , an ∈ R, and an 6= 0 is known as the polynomial
of degree n.
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Chapter 5 : Computation of Derivatives

Using eqs. (5.5)-(5.3) one can easily write
d

dx
P (x) = annx

n−1 + an−1(n− 1)xn−2 + an−2(n− 2)xn−3 + · · ·+ a1.

Example 5.3
d

dx

(
15x4 + 9x3 − 7x2 − 3x+ 5

)
=

d

dx
15x4 +

d

dx
9x3 − d

dx
7x2 − d

dx
3x

d

dx
5

= 60x3 + 27x2 − 14x− 3.

Theorem 5.4

♥

d

dx

√
x =

1

2
√
x

(5.6)

Proof
d

dx

√
x =

d

dx
x

1
2 =

1

2
x−

1
2 =

1

2
√
x
.

For any fractional factors eq. (5.3) can be used, and for radical function which can be converted
to corresponding fractional factor.

5.2 The Product and Quotient Rules

Theorem 5.5

♥

If u(x), and v(x) are two derivable function of x then
d(uv)

dx
= u

dv

dx
+ v

du

dx
. (5.7)

Proof Let y = f(x) = u(x)v(x) then
dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

u(x+ h)v(x+ h)− u(x)v(x)

h

= lim
h→0

u(x+ h)v(x+ h)− u(x+ h)v(x) + u(x+ h)v(x)− u(x)v(x)

h

= lim
h→0

u(x+ h) (v(x+ h)− v(x)) + v(x) (u(x+ h)− u(x))

h

= lim
h→0

u(x+ h) lim
h→0

v(x+ h)− v(x)

h
+ lim

h→0
v(x) lim

h→0

u(x+ h)− u(x)

h

∴
d(uv)

dx
= u

dv

dx
+ v

du

dx
.

Example 5.4
d

dx

((
x2 − 4x

) (
3x2 + 2

))
=

(
x2 − 4x

) d

dx

(
3x2 + 2

)
+
(
3x2 + 2

) d

dx

(
x2 − 4x

)
= 6x

(
x2 − 4x

)
+
(
3x2 + 2

)
(2x− 4)

= 6x3 − 24x2 + 6x3 − 12x2 + 4x− 8

= 12x3 − 36x2 + 4x− 8.
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Again
d

dx

((
x2 − 4x

) (
3x2 + 2

))
=

d

dx

(
3x4 − 12x3 + 2x2 − 8x

)
= 12x3 − 36x2 + 4x− 8.

Corollary 5.2

♥

If c is a constant, and u(x) is a derivable function of x then
d(cu)

dx
= c

du

dx
. (5.8)

Proof In eq. (5.7) replacing v(x) by c,
d(cu)

dx
= u

dc

dx
+ c

du

dx
= c

du

dx
.

Example 5.5
d

dx
5(3x2 + 5x) = 5

d

dx
(3x2 + 5x) = 5(6x+ 5) = 30x+ 25.

Theorem 5.6

♥

If u(x), and v(x) are two derivable function of x and v(x) 6= 0 for all value of x then
d

dx

(u
v

)
=
v du
dx
− u dv

dx

v2
. (5.9)

Proof Let y = f(x) = u(x)
v(x)

then
dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

1

h

(
u(x+ h)

v(x+ h)
− u(x)

v(x)

)
= lim

h→0

1

h

u(x+ h)v(x)− u(x)v(x+ h)

v(x+ h)v(x)

= lim
h→0

1

h

u(x+ h)v(x)− u(x)v(x) + u(x)v(x)− u(x)v(x+ h)

v(x+ h)v(x)

= lim
h→0

1

h

v(x) (u(x+ h)− u(x))− u(x) (v(x+ x)− v(x))

v(x+ h)v(x)

=
v(x)

(
lim
h→0

u(x+h)−u(x)
h

)
− u(x)

(
lim
h→0

v(x+x)−v(x)
h

)
lim
h→0

v(x+ h)v(x)

∴
d

dx

(u
v

)
=

v du
dx
− u dv

dx

v2
.

Example 5.6
d

dx

3x2 − 1

x2 + 1
=

(x2 + 1) d
dx

(3x2 − 1)− (3x2 − 1) d
dx

(x2 + 1)

(x2 + 1)2

=
6x (x2 + 1)− 2x (3x2 − 1)

(x2 + 1)2

=
6x3 + 6x− 6x3 + 2x

(x2 + 1)2 =
8x

(x2 + 1)2
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5.3 Composite Functions and the Chain Rule

We can find derivative of polynomial like

Example 5.7
d

dx
(3x+ 2)3 =

d

dx

[
(3x)3 + 3(3x)22 + 33x22 + 23

]
=

d

dx

(
27x3 + 54x2 + 36x+ 8

)
= 81x2 + 108x+ 36.

but it will be cumbersome if same example become like d
dx

(3x+ 2)101. In this chapter, we will
develop method for derivative of composite function.

Definition 5.2

♣

Let f(x) and v(x) produce a new function y(x), y = f ◦ v such that y(x) = f (v(x)) then y is
called composition function of f and v. Provided that f ◦ v 6= v ◦ f i.e, f (v(x)) 6= v (f(x)).

The following theorem says how to find the derivative of composite function also known as the
chain rule.

Theorem 5.7

♥

Let y = f(v), where v = v(x), so is the function of x, then
dy

dx
=
dy

dv

dv

dx
, (5.10)

where f(v) and v(x) are continuous.

Theorem 5.8

♥

Since y = f(x) = f (v(x)) then f(x + h) = f (v(x+ h)). Let if h → 0 then k = v(x + h)−
v(x)→ 0. Now we have from the definition of derivative

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

f (v(x+ h))− f (v(x))

h

= lim
k→0

f (v(x+ h))− f (v(x))

v(x+ h)− v(x)
lim
h→0

v(x+ h)− v(x)

h

= lim
k→0

f (v(x+ h))− f (v(x))

k
lim
h→0

v(x+ h)− v(x)

h

∴
dy

dx
=

dy

dv

dv

dx
. [Provided limits exist.]

Example 5.8
d

dx
(3x+ 2)101

Let u = 3x+ 2 then du
dx

= 3 we can write
du101

dx
=
du101

du

du

dx
= 101u1003 = 303 (3x+ 2)100 .
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5.4 Derivatives of Exponential

5.4 Derivatives of Exponential

Theorem 5.9

♥
d

dx
ax = ax ln a. (5.11)

Proof
d

dx
ax = lim

h→0

ax+h − ax

h
= ax lim

h→0

ah − 1

h
= ax lim

h→0

eh ln a − 1

h
= ax lim

h→0

1 + h ln a
1!

+ (h ln a)2

2!
+ · · · − 1

h

∴
d

dx
ax = ax ln a.

Corollary 5.3

♥
d

dx
ex = ex. (5.12)

5.5 Derivatives of Logarithm

Theorem 5.10

♥
d

dx
loga x =

1

x
loga e. (5.13)

Proof
d

dx
loga x = lim

h→0

loga(x+ h)− loga x

h
= lim

h→0

1

h
loga

(
1 +

h

x

)
=

1

x
lim
h→0

x

h
loga

(
1 +

h

x

)
Putting z = x

h
, if h→ 0 then z →∞,

d

dx
loga x =

1

x
lim
z→∞

z loga

(
1 +

1

z

)
=

1

x
lim
z→∞

loga

(
1 +

1

z

)z
=

1

x
loga e. [Eq. (3.3)]

∴
d

dx
loga x =

1

x
loga e.

Corollary 5.4

♥
d

dx
lnx =

1

x
. (5.14)

Problem 5.1 If y = ln
[√

1+x+
√

1−x√
1+x−

√
1−x

] 1
2 then show that dy

dx
= −1

x
√

1−x2 .
Solution

y = ln

[√
1 + x+

√
1− x√

1 + x−
√

1− x

] 1
2

=
1

2

[
ln
(√

1 + x+
√

1− x
)
− ln

(√
1 + x−

√
1− x

)]
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Chapter 5 : Computation of Derivatives

Differentiating both side with respect to x

dy

dx
=

1

2

[
− 1

2
√

1+x
+ 1

2
√

1−x√
1 + x+

√
1− x

+

1
2
√

1+x
+ 1

2
√

1−x√
1 + x−

√
1− x

]

=

[
1

2
√

1+x

(
−
√

1 + x+
√

1− x+
√

1 + x+
√

1− x
)

+ 1
2
√

1−x

(√
1 + x−

√
1− x+

√
1 + x+

√
1− x

)
2(1 + x− 1 + x)

]

=

[ √
1−x√
1+x

+
√

1+x√
1−x

4x

]
=

1

4x

1− x+ 1 + x√
1− x2

=
1

2x
√

1− x2

5.6 Trigonometric Derivatives

Theorem 5.11

♥

d

dx
sinx = cosx (5.15)

d

dx
cosx = − sinx (5.16)

Proof
d

dx
sinx = lim

h→0

sin(x+ h)− sinx

h
= lim

h→0

sin(x) cosh+ cosx sinh− sinx

h

= − sinx lim
h→0

1− cosh

h
+ cosx lim

h→0

sinh

h
= cosx.

Similarly,
d

dx
cosx = − sinx

Theorem 5.12

♥

d

dx
tanx = sec2 x (5.17)

d

dx
cotx = − csc2 x (5.18)
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5.6 Trigonometric Derivatives

Proof
d

dx
tanx = lim

h→0

tan(x+ h)− tanx

h
= lim

h→0

1

h

[
sin(x+ h)

cos(x+ h)
− sin(x)

cos(x)

]
= lim

h→0

1

h

[
sin(x+ h) cos(x)− cos(x+ h) sinx

cos(x+ h) cos(x)

]
=

1

cos2(x)
lim
h→0

[
sinh

h

]
∴

d

dx
tanx = sec2 x

Similarly,
d

dx
cotx = − csc2 x

Theorem 5.13

♥

d

dx
secx = secx tanx (5.19)

d

dx
cscx = − cscx cotx (5.20)

Proof
d

dx
secx = lim

h→0

sec(x+ h)− secx

h
= lim

h→0

1

h

[
1

cos(x+ h)
− 1

cos(x)

]
= lim

h→0

1

h

[
cos(x)− cos(x+ h)

cos(x+ h) cos(x)

]
=

1

cos2(x)
lim
h→0

[
−2 sin(x+ h/2) sin(−h/2)

h

]
=

1

cos(x)

sinx

cos(x)
lim
h/2→0

[
sin(h/2)

h/2

]
∴

d

dx
tanx = secx tanx

Similarly,
d

dx
cscx = − cscx cotx

Example 5.9

y = cosx2

=⇒ dy

dx
=

d

dx
cosx2 =

d

dx2
cosx2dx

2

dx
= − sinx2 · 2x = −2x sinx2.

Example 5.10

y = xn sin ax

=⇒ dy

dx
=

d

dx
xn sin ax = xn

d

dx
sin ax+ sin ax

d

dx
xn

= xn
d

dax
sin ax

dax

x
+ nxn−1 sin ax = axn cos ax+ nxn−1 sin ax.
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Chapter 5 : Computation of Derivatives

Example 5.11 Find dy/dx if y = sin (cos x). Let u = cosx then
dy

dx
=
dy

du

du

dx
=

d

dx
sinu

d

dx
cosx = cosu (− sinx) = − cos (cosx) sinx.

Example 5.12 Find dy/dx if y = sin [(1− x2)/(1 + x2)]. Let u = (1− x2)/(1 + x2) then
dy

dx
= cos

(
1− x2

1 + x2

)
d

dx

1− x2

1 + x2
= cos

(
1− x2

1 + x2

)
−2x(1 + x2)− 2x(1− x2)

(1 + x2)2

=
−4x

(1 + x2)2 cos

(
1− x2

1 + x2

)
.

5.7 Derivatives of Inverse Trigonometric Function

Theorem 5.14

♥

d

dx
sin−1 =

1√
1− x2

(5.21)

d

dx
cos−1 = − 1√

1− x2
(5.22)

d

dx
tan−1 =

1

1 + x2
(5.23)

d

dx
cot−1 = − 1

1 + x2
(5.24)

d

dx
sec−1 =

1

x
√
x2 − 1

(5.25)

d

dx
csc−1 = − 1

x
√
x2 − 1

(5.26)

5.8 Logarithmic Differentiation

Theorem 5.15

♥

dy

dx
=

d

dx
u(x)v(x) = uv

(
v

u

du

dx
+
dv

dx
lnu

)
(5.27)

Proof Let y = u(x)v(x) taking ln on both side

ln y = lnu(x)v(x) = v(x) lnu(x)

Differentiating both side with respect to x
1

y

dy

dx
=

v

u

du

dx
+
dv

dx
lnu

∴
dy

dx
= uv

(
v

u

du

dx
+
dv

dx
lnu

)
Problem 5.2 Differentiate y = x+ xx with respect to x.
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5.9 Derivatives of Hyperbolic Function

Solution

y = x+ xx = x+ elnxx = x+ ex lnx

Taking derivative both side with respect to x
dy

dx
= 1 + ex lnx (1 + ln x) = 1 + xx (1 + ln x) .

Problem 5.3 Differentiate y = (cotx)sinx + (tanx)cosx with respect to x.

Solution

y = (cotx)sinx + (tanx)cosx = esinx ln cotx + ecosx ln tanx (5.28)

Differentiate both side with respect to x,
dy

dx
= esinx ln cotx

(
sinx

cotx
(− cotx cscx) + cos x ln cot

)
+ecosx ln tanx

( cosx

tanx
secx tanx− cosx ln tanx

)
dy

dx
= (cotx)sinx (cosx ln cotx− 1) + (tan x)cosx (1− cosx ln tanx)

5.9 Derivatives of Hyperbolic Function

Theorem 5.16

♥

d

dx
sinhx = coshx (5.29)

d

dx
coshx = sinh x (5.30)

d

dx
tanhx = sech2 x (5.31)

d

dx
cothx = − csch2 x (5.32)

d

dx
sechx = − sechx tanhx (5.33)

d

dx
cschx = − cschx cothx (5.34)

5.10 Derivatives of Inverse Hyperbolic Function
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Chapter 5 : Computation of Derivatives

Theorem 5.17

♥

d

dx
sinh−1 x =

1√
1 + x2

(5.35)

d

dx
cosh−1 x =

1√
x2 − 1

(5.36)

d

dx
tanh−1 x =

1

1− x2
(5.37)

d

dx
coth−1 x = − 1

x2 − 1
(5.38)

d

dx
sech−1 x =

1

x
√

1− x2
(5.39)

d

dx
csch−1 x = − 1

x
√
x2 + 1

(5.40)

5.11 Derivatives of Parametric Equation

Definition 5.3

♣

Let x and y both are function of t called parameter i.e. x = x(t), and y = y(t), and the
equations of x, y are called parametric equations.

Theorem 5.18

♥

If x, and y are both parametric functions of t then
dy

dx
=
dy

dt

dt

dx
=
dy

dt
/
dx

dt
. (5.41)

Example 5.13 Find dy
dx

, where x = cos θ and y = sin θ.
dy

dx
=
dy

dθ
/
dx

dθ
=

cos θ

− sin θ
= − cot θ.

Problem 5.4 Find the slope of a tangent to the curve

x = a (t− sin t)

y = a (1− cos t) .

at any point 0 ≤ t ≤ 2π.
Solution

dx

dt
= a (1− cos t)

dy

dt
= a (1 + sin t)

Hence,
dy

dx
=
dy

dt
/
dx

dt
=

1 + sin t

1− cos t
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5.12 Implicit Functions

5.12 Implicit Functions

Definition 5.4

♣

If an equation involving x, and y, the variable y is not given in terms of x, or it is not suitable
to express in terms of x by solving the equation, then y is said to be implicit function.

Example 5.14 Differentiate

ax2 + 2hxy + by2 + d = 0

with respect to x.
Differentiating every terms with respect to x,

2ax+ 2hy + 2hx
dy

dx
+ 2by

dy

dx
= 0

=⇒ (hx+ by)
dy

dx
= − (ax+ hy)

=⇒ dy

dx
=
−ax− hy
hx+ by

.

Problem 5.5 Find dy
dx

, where y = tan−1 y ln sec2 x2.
Solution

y = tan−1 y ln sec2 x2

Differentiating both side with respect to x,

=⇒ dy

dx
=

1

1 + y2

dy

dx
ln sec2 x2 + tan−1 y

1

sec2 x2
2 secx22x

=⇒ dy

dx

(
1− ln sec2 x2

1 + y2

)
= 4x tan−1 y cosx2

=⇒ dy

dx
= 4x tan−1 y cosx2

(
1− ln sec2 x2

1 + y2

)−1

Problem 5.6 Find dy
dx

, where tan y = ecos 2x sinx.
Solution

tan y = ecos 2x sinx

Differentiating every terms with respect to x,

sec y tan y
dy

dx
= ecos 2x (−2 sin 2x) sinx+ ecos 2x cosx

dy

dx
=

1

sec y tan y
ecos 2x (−2 sin 2x sinx+ cosx)

dy

dx
=

cos y

ecos 2x sinx
ecos 2x

(
−4 sin2 x cosx+ cosx

)
dy

dx
= cos y cotx

(
1− 4 sin2 x

)
K Chapter 5 Exercisek

1. Define derivative of a function.
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Chapter 5 : Computation of Derivatives

2. Define polynomial.
3. What do you mean by differentiation.
4. Write product rule for differentiation.
5. Write quotient rule for differentiation.
6. Find the derivative of following functions by using the definition of derivative

(a). xn,
(b). sinx,
(c). cosx,
(d). tanx,
(e). cotx,
(f). secx,
(g). cscx,
(h). ax,
(i). lnx.

7. Differentiate each function two ways, and verify that your answers agree.
(a). (2x− 6)(3x2 + 9)

(b). (x− 1) (x4 + x3 + x2 + x+ 1)

(c). (x3 − 3x)(x2 + 5)

(d). (x4 + 1)(x4 − 1)

8. Differentiate each function and simplify your answer as much as possible.
(a). x−1

x+1

(b). 4x−x4

x3+2

(c).
1
x
− 3
x2

5
x3−

7
x4

(d). 1
1−2x−2

9. Find dy
dx

, where
(a). y = x+ xx,
(b). sin y = x sin (x+ y),
(c). tan y = ecos 2x sinx,
(d). tan y = 2t

1−t2 ; sinx = 2t
1+t2

.
(e). y = tan−1 y ln sec2 x2,
(f). y = (cotx)sinx + (tanx)cosx.

10. If y = tanx

lnx+x
1
2

then find dy
dx

.

11. If y = ln
[√

1+x2+
√

1−x2√
1+x2−

√
1−x2

] 1
2 then show that dy

dx
=

√
1−y2

√
1−x2 .

12. Differentiate
√

1+x2+
√

1−x2√
1+x2−

√
1−x2 with respect to

√
1− x4.

13. Differentiate ln tan
√
x−1 with respect to

√
x− 1.

14. Find the slope of a tangent to the curve

x = a (t− sin t)

y = a (1− cos t) .
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Chapter 5 Exercise

at any point 0 ≤ t ≤ 2π.
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Chapter 6 Successive Differentiation

Introduction

h TO DO

Problem 6.1 If y = x3 sin 2x find yn.
Solution TO DO

y = x3 sin 2x

=⇒ yn =
(
x3 sin 2x

)
n

=⇒ yn =

(6.1)

K Chapter 6 Exercisek

1. Find yn for following functions
(a). y = x3 sin 2x,
(b). y = eax {a2x2 − 2nax+ n(n+ 1)},
(c). y = (x3 + 2x2 + x+ 1) ax,

2. If

y
1
m + y−

1
m = 2x

then proved that (
x2 − 1

)
yn+2 + (2x+ 1)xyn+1

(
n2 −m2

)
yn.





Appendix A Trigonometric Identities

Table A.1: Trigonometric Identities-Sum of Angles
sin (A±B) sinA cosB ± cosA sinB
cos (A±B) cosA cosB ∓ sinA sinB
tan (A±B) tanA±tanB

1∓tanA tanB

Table A.2: Trigonometric Identities-Product Rules
2 sinA cosB sin (A+B) + sin (A−B)
2 cosA sinB sin (A+B)− sin (A−B)
2 cosA cosB cos (A+B) + cos (A−B)
2 sinA sinB cos (A−B)− cos (A+B)

Table A.3: Trigonometric Identities-Sum Rules
sinC + sinD 2 sin

(
C+D

2

)
cos
(
C−D

2

)
sinC − sinD 2 cos

(
C+D

2

)
sin
(
C−D

2

)
cosC + cosD 2 cos

(
C+D

2

)
cos
(
C−D

2

)
cosC − cosD −2 sin

(
C+D

2

)
sin
(
C−D

2

)
Table A.4: Trigonometric Identities-Double Angles

sin 2A 2 sinA cosA
cos 2A cos2A− sin2A = 2 cos2A− 1 = 1− 2 sin2A
tan 2A 2 tanA

1−tan2 A

Table A.5: Trigonometric Identities-Triple Angles
sin 3A 3 sinA− 4 sin3A
cos 3A 4 cos3A− 3 cosA

Table A.6: Trigonometric Identities-Fraction Angles
sinA 2 sin A

2
cos A

2

cosA cos2 A
2
− sin2 A

2
= 2 cos2 A

2
− 1 = 1− 2 sin2 A

2

sinA 3 sin A
3
− 4 sin3 A

3

cosA 4 cos3 A
3
− 3 cos A

3
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Appendix C Standard Integral Formulae
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