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Chapter 1 Introduction to Vector Analysis

Introduction

h Exercise

K Chapter 1 Exercisek

1. Define the following:
(a). Scalar
(b). Vector
(c). Unite Vector
(d). Null Vector
(e). Equal Vector
(f). Like Vector
(g). Colinear vectors
(h). Coplaner vectors
(i). Scalar multiplication of a vector
(j). Addition of vectors

2. Write down the following
(a). Commutative law of vector addition
(b). Associative law of vector addition

3. Write short note on following topics
(a). Position of a vector point

4. Find the distance between the points (−4,−5) and (−1,−1).
5. Find the slope of the line 5x− 5y = 7.





Chapter 2 Vector Multiplications

Introduction

h Scalar or Dot Product
h Vector or Cross Product
h Scalar Triple Product
h Vector Triple Product

h Scalar Product of Four vectors
h Vector Product of Four vectors
h Exercise

2.1 Scalar or Dot Product

Definition 2.1 (Scalar or Dot Product)

♣

The scalar or dot product of two vectors ~u and ~v produce a scalar, and denoted by ~u · ~v (read:
~u dot ~v ), is defined as

~u · ~v = uv cos θ, 0 ≤ θ ≤ π, (2.1)

where θ is the angle between ~u and ~v.

�
Note Though ~u and ~v are vectors, ~u · ~v is a scalar.
Example 2.1 If ~F , ~s are force and displacement vectors respectively then their scalar product produce
a scalar quantity work w,

w = ~F · ~s = Fs cos θ.

The following proposition applies.

Proposition 2.1

♠

Suppose ~u, ~v, and ~w are vectors and m is a scalar. Then the following laws hold:
1. ~u · ~v = ~v · ~u Commutative Law
2. ~u · (~v + ~w) = ~u · ~v + ~u · ~w Distributive Law
3. m (~u · ~v) = (m~u) · ~v = ~u · (m~v) = (~u · ~v)m.
4. î · î = ĵ · ĵ = k̂ · k̂ = 1.
5. î · ĵ = ĵ · î = ĵ · k̂ = k̂ · ĵ = ĵ · k̂ = k̂ · ĵ = 0.
6. If ~u · ~v = 0 and ~u and ~v are not null vectors, then ~u and ~v are perpendicular.

There is a simple formula for ~u · ~v when the unit vectors î, ĵ, and k̂ are used.

Proposition 2.2

♠

Given ~u = uxî+ uy ĵ + uzk̂ and ~v = vxî+ vy ĵ + vzk̂, then

~u · ~v = uxvx + uyvy + uzvz. (2.2)



2.2 Vector or Cross Product

Corollary 2.1

♥If ~u = uxî+ uy ĵ + uzk̂ then ~u · ~u = u2
x + u2

y + u2
z.

2.2 Vector or Cross Product

Definition 2.2 (Vector or Cross Product)

♣

The vector or cross product of two vectors ~u and ~v produce a vector, and denoted by ~u×~v (read:
~u cross ~v ), is defined as

~u× ~v = uv sin θη̂, 0 ≤ θ ≤ π, (2.3)

where θ is the angle between ~u and ~v, and the direction of the vector ~u×~v is denoted by a unite
vector η̂ is perpendicular to the plane of ~u, and ~v, and is determined by the right-handed system.

Example 2.2 If ~F , ~r are force and position vectors respectively then their vector product produce a
vector quantity torque ~τ ,

~τ = ~r × ~F = rF sin θη̂.

The following proposition applies.

Proposition 2.3

♠

Suppose ~u, ~v, and ~w are vectors and m is a scalar. Then the following laws hold:
1. ~u× ~v = −~v × ~u Commutative Law fails
2. ~u× (~v + ~w) = ~u× ~v + ~u× ~w Distributive Law
3. m (~u× ~v) = (m~u)× ~v = ~u× (m~v) = (~u× ~v)m.
4. î× î = ĵ × ĵ = k̂ × k̂ = 0.
5.

î× ĵ = k̂;

ĵ × k̂ = î;

ĵ × k̂ = î;

ĵ × î = −k̂;

k̂ × ĵ = −î;
k̂ × ĵ = −î

6. If ~u× ~v = 0 and ~u and ~v are not null vectors, then ~u and ~v are parallel.
7. The magnitude of ~u× ~v is the same as the area of a parallelogram with sides ~u and ~v.

Proposition 2.4

Given ~u = uxî+ uy ĵ + uzk̂ and ~v = vxî+ vy ĵ + vzk̂, then

4



Chapter 2 : Vector Multiplications

♠

~u× ~v =

∣∣∣∣∣∣∣
î ĵ k̂

ux uy uz

vx vy vz

∣∣∣∣∣∣∣ (2.4)

= (uyvz − uzvy )̂i+ (uzvx − uxvz)ĵ + (uxvy − uyvx)k̂ (2.5)

Corollary 2.2

♥If ~u = uxî+ uy ĵ + uzk̂ then ~u× ~u = 0.

2.3 Scalar Triple Product

Definition 2.3 (Scalar Triple Vector)

♣

If ~u, ~v, and ~w be three vectors, then the scalar product of ~u with ~v × ~w, (or ~u × ~v with ~w) is
called the scalar triple product (STP) of ~u, ~v, ~w, and written as

[~u ~v ~w] = ~u · ~v × ~w = ~u× ~v · ~w.

.

When ~u,~v and ~w can be expressed with the unit vectors î, ĵ, and k̂ then we can get the following
proposition.

Proposition 2.5

♠

Given ~u = uxî+ uy ĵ + uzk̂, ~v = vxî+ vy ĵ + vzk̂, and ~w = wxî+ wy ĵ + wzk̂ then

~u× ~v · ~w =
[
(uyvz − uzvy )̂i+ (uzvx − uxvz)ĵ + (uxvy − uyvx)k̂

]
· (wxî+ wy ĵ + wzk̂),

= (uyvz − uzvy)wx + (uzvx − uxvz)wy + (uxvy − uyvx)wz, (2.6)

=

∣∣∣∣∣∣∣
ux uy uz

vx vy vz

wx wy wz

∣∣∣∣∣∣∣ . (2.7)

2.3.1 Properties of STP

Proposition 2.6
If θ is acute, then the vectors ~u, ~v, and ~w for a right handed system of vectors,

~u× ~v · ~w = ~v × ~w · ~u = ~w × ~u · ~v (2.8)

= ~u · ~v × ~w = ~v · ~w × ~u = ~w · ~u× ~v,
= −~v × ~u · ~w = −~w × ~v · ~u = −~u× ~w · ~v
= −~v · ~u× ~w = ~w · ~v × ~u = ~u · ~w × ~v, (2.9)

5



2.3 Scalar Triple Product

♠

or,

[~u ~v ~w] = [~v ~w ~u] = [~w ~u ~v]

= −[~v ~u ~w] = −[~w ~v ~u] = −[~u ~w ~v] (2.10)

Proof

[~u ~v ~w] = ~u× ~v · ~w

=

∣∣∣∣∣∣∣
ux uy uz

vx vy vz

wx wy wz

∣∣∣∣∣∣∣ [using 2.7]

=

∣∣∣∣∣∣∣
vx vy vz

wx wy wz

ux uy uz

∣∣∣∣∣∣∣ [Determinant law]

= ~v × ~w · ~u [using 2.7]

= [~v ~w ~u]. (2.11)

Similarly, can be proved using 2.10

[~u ~v ~w] = [~v ~w ~u] = [~w ~u ~v].

Again

[~u ~v ~w] = ~u× ~v · ~w
= −~v × ~u · ~w [using ??]

= −[~v ~u ~w] [using 2.7]
�

Note
1. The scalar triple is also called parallelepiped law or box product.
2. The sign of the scalar triple product remains unchanged if the cyclic order of the vectors is

maintained.
3. For every change of cycle order a negative sign is introduced.
4. The dot and cross may be changed at will.

2.3.2 Geometric Interpretation of STP

For ~u× ~v = uv sin θη̂, where η̂ is unite vector perpendicular to the plane of ~u, and ~v. Now,

[~u ~v ~w] = ~u · ~v × ~w

= ~u · vw sin θη̂

= u cosφ vw sin θ

= perpendicular height× area of the base,

= volume of the parallelepiped.

6



Chapter 2 : Vector Multiplications

~u

θ

φ

φ

~v

~w

~v
×
~w

O

Figure 2.1: A
parallelepiped with adjacent vectors ~u, ~v, and ~w.

Corollary 2.3

♥If the three vectors are coplanar and not parallel, then [~u ~v ~w] = 0.

Corollary 2.4

♥If the two vectors are parallel, then [~u ~v ~w] = 0.

Corollary 2.5

♥If the two vectors are equal, then [~u ~u ~w] = 0.

2.4 Vector Triple Product

Definition 2.4 (Vector Triple Vector)

♣

If ~u, ~v, and ~w be three vectors, then the vector product of ~u with ~v × ~w, (or ~u × ~v with ~w) is
called the vector triple product (VTP) of ~u, ~v, ~w, and written as

~u× (~v × ~w) or, (~u× ~v)× ~w.

.

Proposition 2.7

♠

If ~u, ~v, and ~w are three vectors then

~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v) ~w. (2.12)

7



2.5 Product of Multiple(Four) vectors

Corollary 2.6

♥(~u× ~v)× ~w = (~u · ~w)~v − (~w · ~v) ~u. (2.13)

Problem 2.1 Find ~a× (~b× ~c), where ~a = −î+ 2ĵ + k̂,~b = 2̂i+ ĵ − k̂ and ~c = î+ 2ĵ − 2k̂,
Solution We have

~a× (~b× ~c) = (~a · ~c)~b−
(
~a ·~b

)
~c

= (−1 · 1 + 2 · 2 + 1 · −2)(2̂i+ ĵ − k̂)− (−1 · 2 + 2 · 1 + 1 · −1)
(
î+ 2ĵ − 2k̂

)
= (2̂i+ ĵ − k̂) +

(
î+ 2ĵ − 2k̂

)
= 3̂i+ 3ĵ − 3k̂

2.5 Product of Multiple(Four) vectors

Proposition 2.8

♠

If ~a,~b, ~c, and ~d are four vectors then(
~a×~b

)
·
(
~c× ~d

)
= (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c) (2.14)

Proof In scalar triple product dot and cross may be interchanged. We have(
~a×~b

)
·
(
~c× ~d

)
= ~a ·~b×

(
~c× ~d

)
= ~a ·

[
(~b · ~d)~c− (~b · ~c)~d

]
= (~a · ~c)(~b · ~d)− (~b · ~c)(~a · ~d).

Proposition 2.9

♠

If ~a,~b, ~c, and ~d are four vectors then(
~a×~b

)
×
(
~c× ~d

)
=
[
~a ~b ~d

]
~c−

[
~a ~b ~c

]
~d =

[
~a ~c ~d

]
~b−

[
~b ~c ~d

]
~a

.

Proof Let ~r = ~a×~b then using (2.12) we have,(
~a×~b

)
×
(
~c× ~d

)
= ~r ×

(
~c× ~d

)
=

(
~r · ~d

)
~c− (~r · ~c) ~d

=
((
~a×~b

)
· ~d
)
~c−

((
~a×~b

)
· ~c
)
~d(

~a×~b
)
×
(
~c× ~d

)
=

[
~a ~b ~d

]
~c−

[
~a ~b ~c

]
~d (2.15)

Again let ~s = ~c× ~d then using (2.13) we have,(
~a×~b

)
×
(
~c× ~d

)
=

(
~a×~b

)
× ~s

= (~a · ~s)~b−
(
~b · ~s

)
~a(

~a×~b
)
×
(
~c× ~d

)
=

[
~a ~c ~d

]
~b−

[
~b ~c ~d

]
~a (2.16)

8



Chapter 2 : Vector Multiplications

From (2.15)-(2.16) we get the following(
~a×~b

)
×
(
~c× ~d

)
=
[
~a ~b ~d

]
~c−

[
~a ~b ~c

]
~d =

[
~a ~c ~d

]
~b−

[
~b ~c ~d

]
~a

Problem 2.2 Let ā and b̄ be two vectors. Find a vector which is perpendicular to both of them. Show
that the volume of the parallelepiped form by the three vectors is

a2b2 −
(
ā · b̄

)2

Solution Let ~c = ~a × ~b is a vector, which is perpendicular to both of them. Now volume of the
parallelepiped is given by

~c · ~a×~b =
(
~a×~b

)
·
(
~a×~b

)
= (~a · ~a)

(
~b ·~b

)
−
(
~a ·~b

)(
~a ·~b

)
[(2.14)]

= a2b2 −
(
ā · b̄

)2
.

Problem 2.3 Let~a = (1, 2, 3) and~b = (2,−1, 3) be two vectors. Find a vector~c, which is perpendicular
to both ~a and~b. Find the volume of the parallelepiped form by three vectors ~a,~b and ~c.
Solution The given vector ~c is given by

~c = ~a×~b = (2 · 3− (−1) · 3)̂i+ (3 · 2− 1 · 3)ĵ + (1 · (−1)− 2 · 2)k̂ = 9̂i+ 3ĵ − 5k̂

Now the volume of the parallelepiped is as follows

~c · ~a×~b = ~c · ~c = c2 = 92 + 32 + (−5)2 = 115.

K Chapter 2 Exercisek

1. Define the following
(a). Scalar product or, dot product
(b). Vector product or, cross product
(c). Scalar Triple Product
(d). Vector Triple Product

2. Write down the following
(a). Scalar triple product in determinant form.

3. Write short note on following topics
(a).

4. Short questions
(a). Let~a and~b be are not null vectors, then what is the condition that~a and~b are perpendicular.
(b). Let ~a = 2̂i+ 3ĵ find two vectors perpendicular to ~a.
(c). Write down the distributive law for the vector products?
(d). Provide two difference between scalar and vector multiplications of two vectors?
(e). Given that ~a = −î+ 2ĵ + k̂ ,~b = 2̂i+ ĵ − k̂ and ~c = î+ 2ĵ − 2k̂, find ~a×

(
~b× ~c

)
, using

the determinant.
(f). Define vector triple product of three vectors?

5. Let ~a and~b be are not null vectors, then what is the condition that ~a and~b are perpendicular.

9



Chapter 2 Exercise

6. Write down the distributive law for the vector products?
7. Provide two difference between scalar and vector multiplications of two vectors?
8. Explain geometric interpretation of scalar triple product.
9. Find ~a ·~b× ~c, for

(a). ~a = −î+ 2ĵ + k̂,~b = 2̂i+ ĵ − k̂ and ~c = î+ 2ĵ − 2k̂,
10. Let ~a = (1, 2, 3) and ~b = (2,−1, 3) be two vectors. Find a vector ~c, which is perpendicular to

both ~a and~b.
11. Let~a = (1, 2, 3) and~b = (2,−1, 3) be two vectors. Find a unite vector ĉ, which is perpendicular

to both ~a and~b.
12. Using vector triple product show that

ā×
(
b̄× c̄

)
+ b̄× (c̄× ā) + c̄×

(
ā× b̄

)
≡ 0

13. Find ~a× (~b× ~c), for
(a). ~a = −î+ 2ĵ + k̂,~b = 2̂i+ ĵ − k̂ and ~c = î+ 2ĵ − 2k̂,

14. Let ā and b̄ be two vectors. Find a vector which is perpendicular to both of them. Show that the
volume of the parallelepiped form by the three vectors is

a2b2 −
(
ā · b̄

)2
.

15. Let ~a,~b, ~c, and ~d are vectors. Prove that(
~a×~b

)
×
(
~c× ~d

)
=
[
~a ~b ~d

]
~c−

[
~a ~b ~c

]
~d =

[
~a ~c ~d

]
~b−

[
~b ~c ~d

]
~a.

16. Let ~a = (1, 2, 3) and ~b = (2,−1, 3) be two vectors. Find a vector ~c, which is perpendicular to
both ~a and~b. Find the volume of the parallelepiped form by three vectors ~a,~b and ~c.

10



Chapter 3 Differentiation of Vectors

Introduction

h Derivatives of Vector-Valued Functions
h Point Function
h Differentiation of Vectors
h Gradient

h Divergence
h Curl
h Exercise

3.1 Ordinary Derivatives of Vector-Valued Functions

Let the position vector ~r(t) joining the origin O of a coordinate system and any point (x, y, z).
Then

~r(t) = x(t)̂i+ y(t)ĵ + z(t)k̂ (3.1)

and the specification of the vector function ~r(t) defines x, y, and z as functions of t.

3.1.1 Some Rules on Derivatives of Vector-Valued Functions

Proposition 3.1

♠

Let ~u,~v, and ~w are differentiable vector functions of a scalar t, and φ is a differentiable scalar
function of t. Then the following laws hold:

d

dt
(~u± ~v) =

d~u

dt
± d~v

dt
(3.2)

d

dt
(~u · ~v) = ~u · d~v

dt
+
d~u

dt
· ~v (3.3)

d

dt
(~u× ~v) = ~u× d~v

dt
+
d~u

dt
× ~v (3.4)

d

dt
(φ~u) = φ

d~u

dt
+
dφ

dt
~u (3.5)

d

dt
(~u · ~v × ~w) = ~u · ~v × d~w

dt
+ ~u · d~v

dt
× ~w +

d~u

dt
· ~v × ~w (3.6)

d

dt
{~u× (~v × ~w)} = ~u×

(
~v × d~w

dt

)
+ ~u×

(
d~v

dt
× ~w

)
+
d~u

dt
× (~v × ~w) (3.7)



3.2 Point Function

Proposition 3.2

♠

Let ~u and ~v are vector function of x, y, z. Then the following laws hold:
∂

∂t
(~u± ~v) =

∂~u

∂t
± ∂~v

∂t
(3.8)

∂

∂t
(~u · ~v) = ~u · ∂~v

∂t
+
∂~u

∂t
· ~v (3.9)

∂

∂t
(~u× ~v) = ~u× ∂~v

∂t
+
∂~u

∂t
× ~v (3.10)

∂

∂t
(φ~u) = φ

∂~u

∂t
+
∂φ

∂t
~u (3.11)

∂

∂t
(~u · ~v × ~w) = ~u · ~v × ∂ ~w

∂t
+ ~u · ∂~v

∂t
× ~w +

∂~u

∂t
· ~v × ~w (3.12)

∂

∂t
{~u× (~v × ~w)} = ~u×

(
~v × ∂ ~w

∂t

)
+ ~u×

(
∂~v

∂t
× ~w

)
+
∂~u

∂t
× (~v × ~w) (3.13)

Proposition 3.3

♠

Let ~u and ~v are vector function of x, y, z. Then the following laws hold:

If ~u = uxî+ uy ĵ + uzk̂, then d~u = duxî+ duy ĵ + duzk̂ (3.14)

d (~u · ~v) = ~u · d~v + d~u · ~v (3.15)

d (~u× ~v) = ~u× d~v + d~u× ~v (3.16)

3.2 Point Function

Definition 3.1 (Point function)

♣

A physical quantity can be expressed as a continuous function of the position of the point in a
region of space, such a function is called point function and the region in which it specifies the
physical quantity is known as field.

Definition 3.2 (Scalar point function)

♣

A scalar quantity can be expressed as a continuous function of the position of the point in a
region of space, such a function is called scalar point function and the region in which it specifies
the physical quantity is known as a scalar field.

If P (x, y, z) is a point in the region, then φ(x, y, z) defines a scalar point function or a scalar field
for the region.
Example 3.1 φ(x, y, z) = 3x2 − z3x− zy defines a scalar field. The temperature at any point within
or on the surface at a certain time defines a scalar field.
Example 3.2 Temperature, density etc. scalar quantities can be expressed by scalar point functions.

The temperature distribution within some body at a particular point in time.
The density distribution within some fluid at a particular point in time.

12



Chapter 3 : Differentiation of Vectors

Definition 3.3 (Vector point function)

♣

A vector quantity can be expressed as a continuous function of the position of the point in
a region of space, such a function is called vector point function and the region in which it
specifies the physical quantity is known as a vector field.

If P (x, y, z) is a point in the region, then ~v(x, y, z) defines a vector point function or a vector
field for the region.
Example 3.3 If the velocity at a point P (x, y, z), which in a moving fluid is known for the region,
then ~v(P) is the vector field.

~v(x, y, z) = xyî+ zxĵ + yzk̂,

is a example of vector field.
Example 3.4 Following vector quantities can be expressed by vector point functions.

Gravitational field of the earth.
Electric field about a current-carrying wire.
Magnetic field generated by a magnet.
Velocity at different points within a moving fluid.
Acceleration at different points within a moving fluid.

3.3 Differentiation of Vectors

The vector differential operator del, written∇, is defined as follows:

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ = î

∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(3.17)

This vector operator possesses properties analogous to those of ordinary vectors. It is useful
in defining three quantities that appear in applications and which are known as the gradient, the
divergence, and the curl. The operator ∇ is also known as nabla.

3.4 Gradient

Definition 3.4 (Gradient)

♣

Let φ(x, y, z) be a scalar function defined and differentiable at each point (x, y, z) in a certain
region of space. [That is, φ defines a differentiable scalar field.] Then the gradient of φ , written
∇φ or grad φ is defined as follows:

∇φ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
φ =

∂φ

∂x
î+

∂φ

∂y
ĵ +

∂φ

∂z
k̂ =

∑ ∂φ

∂x
î.

�
Note ∇φ defines a vector field.
Problem 3.1 Let φ(x, y, z) = 3xy2 − y2z2. Find ∇φ (or grad φ) at the point P (1, 1, 2).

13



3.5 Divergence

Solution

∇φ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)(
3xy2 − y2z2

)
= 3y2î+

(
6xy − 2yz2

)
ĵ − 2y2zk̂

Therefore,

∇φ(1, 1, 2) = 3̂i+ (6− 8) ĵ − 4k̂ = 3̂i− 2ĵ − 4k̂.

3.4.1 Directional Derivative of a Scalar Point Function

We can find directional derivative of a scalar point function along any line or a vector by following
definition.

Definition 3.5 (Directional Derivative)

♣

Consider a scalar function φ = φ(x, y, z). Then the directional derivative of φ in the direction
of a vector ~u is denoted by D~u(φ) = ∇φ · û. Where û, is the unite vector of ~u.

Problem 3.2 Consider the scalar function φ(x, y, z) = x2 + y2 + xz.

1. Find grad φ.
2. Find grad φ at the point P = P (2,−1, 3).
3. Find the direction derivative of φ at the point P in the direction of ~u = î+ 2ĵ + k̂.

Solution

∇φ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)(
x2 + y2 + xz

)
= (2x+ z) î+ 2yĵ + xk̂

Therefore,

∇φ(2,−1, 3) = 7̂i− 2ĵ + 2k̂.

Now, for unite vector û in the direction of ~u,

û =
~u

u
=

2̂i− ĵ + 3k̂√
22 + 12 + 32

=
1√
14

(
2̂i− ĵ + 3k̂

)
Then the directional derivative of φ at the point P (2,−1, 3) in the direction of ~u follows:

∇φ · û =
(

7̂i− 2ĵ + 2k̂
)
·
[

1√
14

(
2̂i− ĵ + 3k̂

)]
=

14 + 2 + 6√
14

=
22√
14
.

3.5 Divergence

Definition 3.6 (Divergence)

Let ~u(x, y, z) = u1î+ u2ĵ + u3k̂ is defined and differentiable at each point (x, y, z) in a region
of space. (That is, ~u defines a differentiable vector field.) Then the divergence of ~u, written∇·~u

14



Chapter 3 : Differentiation of Vectors

♣

or div ~u is defined as follows:

div ~u = ∇ · ~u =

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
·
(
u1î+ u2ĵ + u3k̂

)
,

=
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
.

=
∑ ∂u1

∂x
.

�
Note

1. Although ~u is a vector, ∇ · ~u is a scalar.
2. ∇ · ~u 6= ~u · ∇.
3. ∇ · ~u is a scalar.
4. ~u · ∇ is a operator.

Problem 3.3 Let ~u = x2z2î− 2y2z2ĵ + xy2zk̂. Find∇ · ~u at the point P (1,−1, 1).

Solution

∇ · ~u =

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
·
(
x2z2î− 2y2z2ĵ + xy2zk̂

)
,

=
∂

∂x

(
x2z2

)
+

∂

∂y

(
−2y2z2

)
+

∂

∂z

(
xy2z

)
= 2xz2 − 4yz2 + xy2

At the point P (1,−1, 1),

∇ · ~u = 2 + 4 + 1 = 7.

Definition 3.7 (Solenoidal)

♣A vector ~u is said to be solenoidal if ∇ · ~u = 0.

3.6 Curl

Definition 3.8 (Curl)

Let ~u(x, y, z) = u1î+ u2ĵ + u3k̂ is defined and differentiable at each point (x, y, z) in a region
of space. (That is, ~u defines a differentiable vector field.) Then the curl of ~u, written ∇× ~u or

15



3.7 Formulae involving∇

♣

curl ~u is defined as follows:

curl ~u = ∇× ~u =

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
×
(
u1î+ u2ĵ + u3k̂

)
,

=

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

u1 u2 u3

∣∣∣∣∣∣∣
=

(
∂u3

∂y
− ∂u2

∂z

)
î+

(
∂u1

∂z
− ∂u3

∂x

)
ĵ +

(
∂u2

∂x
− ∂u1

∂y

)
k̂

=
∑(

∂u3

∂y
− ∂u2

∂z

)
î (3.18)

Definition 3.9 (Irrotational)

♣A vector ~u is said to be irrotational if ∇× ~u = 0.

3.7 Formulae involving∇

Proposition 3.4

♠

If φ, and ψ are differentiable scalar function of positions (x, y, z) then prove that
grad (φ+ ψ) = grad φ+ grad ψ, or

∇ (φ+ ψ) = ∇φ+∇ψ.

Proof

∇ (φ+ ψ) =
∂ (φ+ ψ)

∂x
î+

∂ (φ+ ψ)

∂y
ĵ +

∂ (φ+ ψ)

∂z
k̂

=

(
∂φ

∂x
î+

∂φ

∂y
ĵ +

∂φ

∂z
k̂

)
+

(
∂ψ

∂x
î+

∂ψ

∂y
ĵ +

∂ψ

∂z
k̂

)
= ∇φ+∇ψ.

Proposition 3.5

♠

If ~u, and ~v are differentiable vector function of positions (x, y, z) then prove that div (φ+ ψ) =

div φ+ div ψ, or
∇ · (~u+ ~v) = ∇ · ~u+∇ · ~v.

Proof

∇ · (~u+ ~v) =
∑

î
∂

∂x
· (~u+ ~v) ,

=
∑

î ·
(
∂

∂x
~u+

∂

∂x
~v

)
=

∑
î · ∂
∂x
~u+

∑
î · ∂
∂x
~v

= ∇ · ~u+∇ · ~v.

16



Chapter 3 : Differentiation of Vectors

Proposition 3.6

♠

If ~u, and~v are differentiable vector function of positions (x, y, z) then prove that curl (φ+ ψ) =

curl φ+ curl ψ, or
∇× (~u+ ~v) = ∇× ~u+∇× ~v.

Proof

∇× (~u+ ~v) =
∑

î
∂

∂x
× (~u+ ~v) ,

=
∑

î×
(
∂

∂x
~u+

∂

∂x
~v

)
=

∑
î× ∂

∂x
~u+

∑
î× ∂

∂x
~v

= ∇× ~u+∇ · ~v.

Proposition 3.7

♠

If φ, and ψ are differentiable scalar function of positions (x, y, z) then prove that grad (φψ) =

φ grad ψ + ψ grad ψ, or
∇ (φψ) = φ∇ψ + ψ∇φ.

Proof

∇ (φψ) =
∑

î
∂

∂x
(φψ) ,

=
∑

î

(
φ
∂

∂x
ψ + ψ

∂

∂x
φ

)
= φ

∑
î
∂

∂x
ψ + ψ

∑
î
∂

∂x
φ

= φ∇ψ + ψ∇φ.

Proposition 3.8

♠

If ~u, and ~v are differentiable vector function of positions (x, y, z) then prove that grad (~u · ~v) =

~u× curl ~v + ~v × curl ~u+ (~u · ∇)~v + (~v · ∇) ~u, or

∇ (~u · ~v) = ~u×∇× ~v + ~v ×∇× ~u+ (~u · ∇)~v + (~v · ∇) ~u.

Proof

∇ (~u · ~v) =
∑

î
∂

∂x
(~u · ~v) ,

=
∑

î

(
~u · ∂

∂x
~v + ~v · ∂

∂x
~u

)
=

∑
î

(
~u · ∂

∂x
~v

)
+
∑

î

(
~v · ∂

∂x
~u

)
(3.19)
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Chapter 3 Exercise

Now,

~u×∇× ~v = ~u×
∑

î
∂

∂x
× ~v

= ~u×
∑

î× ∂~v

∂x

=
∑

î

(
~u · ∂

∂x
~v

)
−
∑(

~u · î
) ∂~v
∂x

=
∑

î

(
~u · ∂

∂x
~v

)
−
∑(

~u · î ∂
∂x

)
~v

=
∑

î

(
~u · ∂

∂x
~v

)
−
∑

(~u · ∇)~v

=⇒
∑

î

(
~u · ∂

∂x
~v

)
= ~u×∇× ~v +

∑
(~u · ∇)~v

Similarly, ∑
î

(
~v · ∂

∂x
~u

)
= ~v ×∇× ~u+

∑
(~v · ∇) ~u

K Chapter 3 Exercisek
1. Define following

(a). Point function
(b). Scalar point function
(c). Vector point function
(d). Gradient
(e). Divergence
(f). Curl
(g). Solenoidal
(h). Irrotational

2. If ~u, and ~v are differentiable vector function and φ, and ψ are differentiable scalar function of
positions (x, y, z) then prove the following formulae
(a). ∇ (φ+ ψ) = ∇φ+∇ψ,
(b). ∇ · (~u+ ~v) = ∇ · ~u+∇ · ~v,
(c). ∇× (~u+ ~v) = ∇× ~u+∇× ~v,
(d). ∇ · (φ~u) = (∇φ) · ~u+ φ (∇ · ~u),
(e). ∇× (φ~u) = (∇φ)× ~u+ φ (∇× ~u),
(f). ∇ · (~u× ~v) = ~u · (∇~v)− ~u · (∇× ~v),
(g). ∇× (~u× ~v) = (~v · ∇) ~u− ~v (∇ · ~u)− (~u · ∇)~v + ~u (∇ · ~v),
(h). ∇ (~u · ~v) = (~v · ∇) ~u+ (~u · ∇)~v + ~v × (∇× ~u) + ~u× (∇× ~v),
(i). ∇ · (∇φ) = ∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
=
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
φ,

(j). ∇× (∇φ) = curl grad φ = 0,
(k). ∇ · (∇× ~u) = div curl ~u = 0,
(l). ∇× (∇× ~u) = ∇ (∇ · ~u)−∇2~u

18



Chapter 3 : Differentiation of Vectors

3. Let ~r = (x, y, z), then prove the following formulae
(a). div ~r = ∇ · ~r = 3,
(b). curl ~r = ∇× ~r = 0,
(c). ∇ ·

(
~r
r3

)
= div

(
~r
r3

)
= 0,

(d). ∇ · (rn~r) = div (rn~r) = (n+ 3)rn
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Chapter 4 Integration of Vectors

Introduction

h Vector Integration
h Line Integral
h Surface Integral
h Volume Integral

h Green’s Theorem
h Gauss’s Theorem
h Stokes’s Theorem
h Exercise

4.1 Vector Integration

Definition 4.1 (Vector Integration)

♣

Let ~V = ~V (t) = Vxî+ Vy ĵ + Vzk̂ be a given vector function of the scalar variable t, and these
values are supposed to be finite and for values of t in specified interval. Then∫

V (t) dt = î

∫
V (t) dt+ ĵ

∫
V (t) dt+ k̂

∫
V (t) dt (4.1)

is called the indefinite integral of ~V (t).

4.2 Line Integral

Definition 4.2 (Line Integral)

♣

The line integral of ~F along the curve C may be written as∫
C

~F · d~r. (4.2)

Problem 4.1 Find the line integral
∮
y2dx − x2dy about the triangle whose vertices are (1,0), (0,1),

(-1,0).

Solution The sides of the triangles are the segments of the lines
x− 1

1− 0
=
y − 0

0− 1
;

x− 0

0 + 1
=
y − 1

1− 0
;

x+ 1

−1− 1
=
y − 0

0− 0
;

or,

x+ y = 1; , y − x = 1; y = 0. (4.3)

Hence, line integrals are



4.3 Surface Integral

O A

B

C

I1 =

∫
C1

(y2dx− x2dy)

=

∫ 0

1

((1− x)2dx+ x2dx) [for y = 1− x; dy = −dx]

=

[
−(1− x)3

3
+
x3

3

]0

1

=
−1

3
+ 0− 0− 1

3
= −2/3.

I2 =

∫
C2

(y2dx− x2dy)

=

∫ −1

0

((x+ 1)2dx− x2dx) [for y = 1 + x; dy = dx]

=

[
(x+ 1)3

3
− x3

3

]−1

0

= −1

3
+

1

3
= 0,

and

I3 =

∫
C3

(y2dx− x2dy) = 0 [for y = 0; dy = 0]

then I = I1 + I2 + I3 = −2
3
.

Problem 4.2 Find the line integral
∮
y2dx− x2dy about the circle x2 + (y − 1)2 = 1.

Solution If x = cos θ, then y = 1 + sin θ, which represents the circle. Also dx = − sin θ, and
dy = cos θ. Then

I =

∮
C

(y2dx− x2dy)

=

∫ 2π

0

[
− (1 + sin θ)2 sin θ − cos2 θ cos θ

]
dθ

= −
∫ 2π

0

(
sin θ + 2 sin2 θ + sin3 θ + cos3 θ

)
dθ

= −
∫ 2π

0

(
sin θ + (1− cos 2θ) +

1

4
(3 sin θ − sin 3θ) +

1

4
(3 cos θ + cos 3θ)

)
dθ

= −[θ]2π0 = −2π.

[
∵
∫ 2π

0

sin θ = 0;

∫ 2π

0

cos θ = 0.

]
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4.3 Surface Integral

Definition 4.3

♣

The surface integral of the vector ~F = ~F (r) over the surfaces S is defined to be∫
S

~F · d~a. (4.4)

Definition 4.4 (Simple Closed Curve)

♣A closed curve which does not intersects itself is called a simple closed curve.

Definition 4.5 (Simply Connected Region)

♣

If a plane region has the property that any simple closed curve in it can can be continuously
shrunk to a point without leaving the region then the region is called a simply connected region.

Definition 4.6 (Multiply Connected Region)

♣

If a plane region has the property that any simple closed curve in it can can not be continuously
shrunk to a point without leaving the region then the region is called a multiply connected
region.

4.4 Volume Integral

Definition 4.7 (Volume Integral)

♣

If we consider a closed surface in space enclosing a volume V , then

V =

∫∫∫
~F · d~v, (4.5)

is defined the volume integration.

4.5 Green’s Theorem

Definition 4.8 (Green’s Theorem)

♣

Let R be a closed region bounded by a closed regular curve C whose boundary is cut at most
two points by parallel to axes. Then if M(x, y), N(x, y), ∂M

∂y
, ∂N
∂x

are continuous in R then∮
C

(Mdx+Ndx) =

∮
R

(
∂N

∂x
− ∂M

∂y

)
dxdy (4.6)

where the circuit integral C is taken over the boundary of R in the positive sense.

Problem 4.3 Verify Green’s Theorem in the plane for
∮
C
{(2x− y3) dx− xydy}, where C is the

boundary of the region enclosed by the circles x2 + y2 = 1 and x2 + y2 = 9.
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4.5 Green’s Theorem

Solution Along the circle x2 + y2 = 1, the integral is∮
C1

{(
2x− y3

)
dx− xydy

}
Let x = cos θ, and y = sin θ then dx = − sin θdθ, and dy = cos θdθ then we have,∮

C1

{(
2x− y3

)
dx− xydy

}
= −

∫ 2π

0

(
2 cos θ − sin3 θ

)
(− sin θdθ)− cos θ sin θ cos θdθ

= −
∫ 2π

0

(
−2 cos θ + sin3 θ − cos2 θ

)
sin θdθ

= −
∫ 2π

0

sin4 θdθ = −4 · 3

4

1

2

π

2
= −3π

4
.

Similarly, along the circle x2 + y2 = 9, the integral is∮
C2

{(
2x− y3

)
dx− xydy

}
Let x = 3 cos θ, and y = 3 sin θ then dx = −3 sin θdθ, and dy = 3 cos θdθ then we have,∮

C2

{(
2x− y3

)
dx− xydy

}
=

∫ 2π

0

(
6 cos θ − 27 sin3 θ

)
(−3 sin θdθ)− 3 cos θ3 sin θ3 cos θdθ

=

∫ 2π

0

(
−18 cos θ + 81 sin3 θ − 27 cos2 θ

)
sin θdθ

= 81

∫ 2π

0

sin4 θdθ = 4 · 81 · 3

4

1

2

π

2
=

243π

4
.

Hence, ∮
C

Mdx+Ndy =
243π

4
− 3π

4
= 60π.

Again

I =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∫∫
R

(
∂

∂x
(−xy)− ∂

∂y

(
2x− y3

))
dxdy =

∫∫
R

(
−x+ 3y2

)
dxdy

Putting x = r cos θ, y = r sin θ, and dxdy = rdθdr. Limits of r from 0 to 1 and θ from 0 to 2π.

I =

∫ 3

1

∫ 2π

0

(
−r cos θ + 3r2 sin2 θ

)
rdθdr =

∫ 3

1

[
−r sin θ + 3r2

(
1

2
θ − 1

4
sin2 θ

)]2π

0

rdr

=

∫ 3

1

3r3πdr =
3π

4
(81− 1) = 60π.

Hence, the theorem is verified.

Problem 4.4 Verify Green’s Theorem for
∮
C

(3x2 + 2y) dx−(x+3 cos y)dy, around the parallelogram
having vertices at (0,0), (2,0), (3,1), and (1,1).

Solution Along the line OA, y = 0, and dy = 0, hence, the integral is∮
C1

(
3x2 + 2y

)
dx− (x+ 3 cos y)dy =

∫ 2

0

3x2dx =
[
x3
]2

0
= 8.
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Along the line AB, y = x− 2, and dy = dx then the integral is∮
C2

(
3x2 + 2y

)
dx− (x+ 3 cos y)dy =

∫ 3

2

(
3x2 + x− 4− 3 cos(x− 2)

)
dx

=

[
x3 +

x2

2
− 4x− 3 sin(x− 2)

]3

2

= 27 +
9

2
− 12− 3 sin 1− 8− 2 + 8− 0 =

35

2
− 3 sin 1.

O A

BC

Along the line BC, y = 1, and dy = 0, hence, the integral is∮
C3

(
3x2 + 2y

)
dx− (x+ 3 cos y)dy =

∫ 1

3

(3x2 + 2)dx =
[
x3 + 2x

]1
3

= 1 + 2− 27− 6 = −30.

And along the line CO, y = x, and dy = dx then the integral is∮
C4

(
3x2 + 2y

)
dx− (x+ 3 cos y)dy =

∫ 0

1

(
3x2 + x− cosx

)
dx

=

[
x3 +

x2

2
− 3 sinx

]0

1

= −1− 1

2
+ 3 sin 1 = −3

2
+ 3 sin 1.

Hence,∮
C

(
3x2 + 2y

)
dx− (x+ 3 cos y)dy = 8 +

35

2
− 3 sin 1− 30− 3

2
+ 3 sin 1 = −6.

Again

I =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∫∫
R

(
∂

∂x
(−x− 3 cos y)− ∂

∂y

(
3x2 + 2y

))
dxdy = −3

∫∫
R

dxdy

Along the line OA

I1 = −3

∫ 2

x=0

∫ 0

y=0

dydx = 0.

Along the line AB

I2 = −3

∫ 3

x=2

∫ 1

y=0

dydx = −3

∫ 3

x=2

[y]10 dx = −3

∫ 3

x=2

dx = −3

Along the line BC

I3 =

∫ 1

x=3

∫ 1

y=1

(6x+ 3 sin y) dydx = 0.
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4.6 Divergence Theorem of Gauss

And along the line CO

I4 = −3

∫ 0

x=1

∫ 0

y=1

dydx = −3

∫ 3

x=2

[y]01 dx = 3

∫ 3

x=2

dx = −3.

Which provide us

I = I1 + I2 + I3 + I4 = 0− 3 + 0− 3 = −6.

Hence, the theorem is verified.

4.6 Divergence Theorem of Gauss

Definition 4.9 (Divergence Theorem of Gauss)

♣

Let V is the volume bounded by a closed surface S and ~F is a vector function of position with
continuous derivatives. Then divergence theorem of Gauss is given by∫∫∫

V

div ~Fdv =

∫∫∫
V

∇ · ~Fdv =

∫∫
S

~F · n̂ds (4.7)

where n̂ is the positive (outward drawn ) normal to S.

Problem 4.5 Verify the divergence theorem for the vector field, ~F = (2xy + z) î+ y3ĵ − (x+ 3y) k̂

taken over the region bounded by 2x+ 2y + z = 6, x = 0, y = 0, z = 0.
Solution ∮

V

∇~Fdv =

∮
V

[
∂

∂x
(2xy + z) +

∂

∂y
y3 +

∂

∂z
(−x− 3y)

]
dv

=

∮
V

[
2y + 3y2

]
dv

=

∫ 3

x=0

∫ 3−x

y=0

∫ 6−2x−2y

z=0

[
2y + 3y2

]
dzdydx

=

∫ 3

x=0

∫ 3−x

y=0

(
2y + 3y2

)
[z]6−2x−2y

0 dydx

= 2

∫ 3

x=0

∫ 3−x

y=0

(
2y + 3y2

)
(3− x− y) dydx

= 2

∫ 3

x=0

∫ 3−x

y=0

(
6y + 9y2 − 2xy − 3xy2 − 2y2 − 3y3

)
dydx

= 2

∫ 3

x=0

∫ 3−x

y=0

(
6y + 7y2 − 2xy − 3xy2 − 3y3

)
dydx

= 2

∫ 3

x=0

[
3y2 +

7

3
y3 − xy2 − xy3 − 3

4
y4

]3−x

0

dx

= 2

∫ 3

x=0

[
(3− x)3 +

7

3
(3− x)3 − x(3− x)3 − 3

4
(3− x)4

]
dx

= 2

∫ 3

x=0

(3− x)3

[
10

3
− x− 9

4
+

3

4
x

]
dx
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Chapter 4 : Integration of Vectors

= 2

∫ 3

x=0

(3− x)3

[
13

12
− 1

4
x

]
dx

=
1

2

∫ 3

x=0

(3− x)3

[
13

3
− x
]
dx

=
1

2

∫ 3

t=0

t3
[

4

3
+ t

]
dt

[
let

t = 3− x =⇒ x = 3− t =⇒ dx = −dt
x = 0, t = 3;x = 3, t = 0

]

=
1

2

∫ 3

t=0

[
4

3
t3 + t4

]
dt

=
1

2

[
1

3
t4 +

1

5
t5
]3

0

=
1

2

[
1 +

9

5

]
33 =

1

2

14

5
27 =

189

5
(4.8)

The surface S consists of four faces are S1(x = 0), S2(y = 0), S3(z = 0), S4(2x+ 2y + z = 6).

On the plane x = 0, nds = −îdxdz.∮
S1

~F · nds =

∮
R

(
zî+ y3ĵ − 3yk̂

)
(−î)dxdz = −

∫ 3

x=0

∫ 1
2

(6−z)

y=0

zdydz = 0.

On the plane y = 0, nds = −ĵdxdz.∮
S2

~F · nds =

∮
R

(
zî− xk̂

)
(−ĵ)dxdz = 0.

On the plane z = 0, nds = −k̂dxdz.∮
S3

~F · nds =

∮
R

(
2xyî+ y3ĵ − (x+ 3y)k̂

)
(−k̂)dxdy

=

3∫
y=0

3−y∫
x=0

(x+ 3y)dxdy

=

3∫
y=0

[
x2

2
+ 3xy

]3−y

x=0

dy

=

3∫
y=0

(3− y)2

2
+ 3y(3− y)dy

=
1

2

3∫
y=0

(9 + 12y − 5y2)dy

=
1

2

[
9y + 6y2 − 5

3
y3

]3

y=0

=
1

2
[27 + 54− 45] = 18.

On the plane

2x+ 2y + z = 6, =⇒ ∇(2x+ 2y + z) = 2̂i+ 2ĵ + k̂,
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4.7 Stokes’s Theorem

which provide us n̂ = 2̂i+2ĵ+k̂√
22+2+1

= 2̂i+2ĵ+k̂
3

; ds = 3dxdy∮
S4

~F · nds =

∮
R

(
2xyî+ y3ĵ − (x+ 3y)k̂

)
· 1

3

(
2̂i+ 2ĵ + k̂

)
3dxdy

=

3∫
y=0

3−y∫
x=0

(
4xy + 2y3 − x− 3y

)
dxdy

=

3∫
y=0

3−y∫
x=0

(
x (4y − 1) + 2y3 − 3y

)
dxdy

=

3∫
y=0

[
1

2
x2 (4y − 1) +

(
2y3 − 3y

)
x

]3−y

0

dy

=

3∫
y=0

[
1

2
(3− y)2 (4y − 1) +

(
2y3 − 3y

)
(3− y)

]
dy

=
1

2

3∫
y=0

[
36y − 24y2 + 4y3 − 9 + 6y − y2 + 12y3 − 18y − 4y4 + 6y2

]
dy

=
1

2

3∫
y=0

[
−9 + 24y − 19y2 + 16y3 − 4y4

]
dy

=
1

2

[
−9y + 12y2 − 19

3
y3 + 4y4 − 4

5
y5

]3

0

=
1

2

[
−27 + 108− 171 + 324− 972

5

]
=

[
117− 486

5

]
=

1

3

[
99

5

]
Now we have,∮

S

~F · nds =

∮
S1

~F · nds+

∮
S2

~F · nds+

∮
S3

~F · nds+

∮
S4

~F · nds = 0 + 0 + 18 +
99

5
=

189

5
.

Hence, the theorem is verified.

4.7 Stokes’s Theorem

Definition 4.10 (Stokes’s Theorem)

♣

Let C is the boundary of region enclosed by the surface S, the vector function ~F is single valued
and continuous with first order derivative in any direction, then Stokes’s theorem is given by∫

C

~F · dl =

∫∫
S

n̂ curl ~Fds =

∫∫
S

(
∇× ~Fds

)
(4.9)

Problem 4.6 Verify the Stokes’s theorem for the vector, ~F = 2yî + 3xĵ − z2k̂, where S is the upper
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Chapter 4 : Integration of Vectors

half surface of the sphere x2 + y2 + z2 = 9 and C is boundary.
Solution The boundary C of the region R is a circle in the xy-plane of radius 3 and center is at the
origin. If we consider x2 + y2 = 9, z = 0, x = 3 cos θ, y = 3 sin θ, where 0 < θ < 2π. then∮

C

~F · dr =

∮
C

(
2yî+ 3xĵ − z2k̂

)
·
(
dxî+ dyĵ + dzk̂

)
=

∮
C

(
2ydx+ 3xdy − z2dz

)
=

∫ 2π

0

(−6 sin θ3 sin θdθ + 9 cos θ3 cos θdθ)

= 36

∫ π/2

0

(
−2 sin2 θ + 3 cos2 θ

)
dθ

= 36

∫ π/2

0

(
cos 2θ − 1 +

3

2
cos 2θ +

3

2

)
dθ

= 18

∫ π/2

0

(5 cos 2θ + 1) dθ

= 18

[
5

2
sin 2θ + θ

]π/2
0

= 9π.

Again

∇× ~F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

2y 3x −z2

∣∣∣∣∣∣∣ = (3− 2)k̂ = k̂.

Now ∫
S

(
∇× ~F

)
· n̂ds =

∫
S

k̂ · n̂ds =

∫
R

dxdy

=

∫ 3

x=−3

∫ √9−x2

y=−
√

9−x2
dydx = 4

∫ 3

x=0

∫ √9−x2

y=0

dydx

= 4

∫ 3

x=0

[y]
√

9−x2
0 dx = 4

∫ 3

x=0

√
9− x2dx

= 4

[
x
√

9− x2

2
+

9

2
sin−1 x

3

]3

0

= 4
9

2

π

2
= 9π.

Hence, ∮
C

~F · dr =

∫
S

(
∇× ~F

)
· n̂ds.

Stoke’s theorem is verified.

K Chapter 4 Exercisek
1. Short questions.

(a). State the line integral.
(b). Define Surface integral.
(c). Define Volume integral.
(d). State Green’s theorem in the plane.
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Chapter 4 Exercise

(e). State the divergent theorem (Gauss’s theorem).
(f). State the Stokes’s theorem.

2. Find the line integral
∮
y2dx− x2dy about the triangle whose vertices are (1,0), (0,1), (-1,0).

3. Find the line integral
∮
y2dx− x2dy about the circle x2 + (y − 1)2 = 1.

4. Verify the divergence theorem for the vector field, ~F = (2xy + z) î + y3ĵ − (x+ 3y) k̂ taken
over the region bounded by 2x+ 2y + z = 6, x = 0, y = 0, z = 0.

5. Verify Green’s Theorem in the plane for
∮
C
{(2x− y3) dx− xydy}, where C is the boundary

of the region enclosed by the circles x2 + y2 = 1 and x2 + y2 = 9.
6. Verify Green’s Theorem for

∮
C

(3x2 + 2y) dx − (x + 3 cos(y))dy, around the parallelogram
having vertices at (0,0), (2,0), (3,1), and (1,1).

7. Verify the Stokes’s theorem for the vector, ~F = 2yî + 3xĵ − z2k̂, where S is the upper half
surface of the sphere x2 + y2 + z2 = 9 and C is boundary.
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Chapter 5 Complex Numbers

Introduction

h Complex Number System
h Polar Form of Complex Number
h Exponential Form of Complex Number

h Operation in Polar Form
h De’Moiver’s Theorem
h Roots of Complex Number

5.1 Complex Number System

There is no number x that satisfies the polynomial equation x2 + 1 = 0. To permit solution of
this, and similar type equations, the set of complex number is introduced.

Definition 5.1 (Complex Number)

♣

A complex number can be written as a + ib, where a, b ∈ R where a, b are called real and
imaginary parts respectively, and i =

√
−1, which is called the imaginary unite.

We can consider real number as a subset of the set of complex number with b = 0. The complex
number 0 + i0 is corresponds to the real number 0.

If z = a+ ib be a complex number, then
Real part of z = Re(z) = a.
Imaginary part of z = Im(z) = b.

Two complex numbers z1 = a+ ib, and z2 = c+ id are said to be equal if and only if a = c, and
b = d.

�
Note Inequalities for complex numbers are not defined.

Definition 5.2 (Complex Conjugate)

♣The complex conjugate of z = a+ ib is denoted by z∗ or z̄ and defined as a− ib.

5.1.1 Operations of Complex Numbers

In performing operations with complex numbers, let a, b, c, d,m ∈ R, then we can proceed as in
the algebra of real numbers, replacing i2 by −1 when it occurs.

1. Addition:
(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

2. Multiplication:
(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

,
m(a+ ib) = ma+ imb



5.2 Axiomatic Foundation of the complex Number System

3. Division: If c and d are not simultaneously zero, then
a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

5.2 Axiomatic Foundation of the complex Number System

From a strictly logical point of view, it is desirable to define a complex number as an ordered pair
(a, b) of real numbers a and b subject to certain operational definitions, which turn out to be equivalent
to those above. These definitions are as follows, where all letters represent real numbers.

1. Equality (a, b) = (c, d), if and only if a = c, and b = d.
2. Sum (a, b) + (c, d) = (a+ c, b+ d).
3. Multiplication

(a, b)(c, d) = (ac− bd, ad+ bc)

m(a, b) = (ma,mb).

5.3 Polar and Exponential Form of Complex Numbers

Definition 5.3 (Absolute value or Modulus)

♣

The absolute value or modulus of a complex number z = a + ib is defined as |z| = |a + ib| =√
a2 + b2.

Definition 5.4 (Argument)

♣

The argument of a complex number z = a + ib is defined as argz = θ = tan−1
(
b
a

)
, it is a

multivalued function.

Definition 5.5 (Argand Plane or Argand Diagram or Complex Plane)

♣

When a complex number z is represented by a point P (x, y) in the xy-plane, then this plane is
called the argand plane/diagram or complex plane.

5.3.1 Polar Form of Complex Number

Let P be a point in the complex plane corresponding to the complex number (a, b) or a + ib.
Then we see from Fig. 5.1 that

a = r cos θ, b = r sin θ

where r =
√
a2 + b2 = |a+ib| is called the modulus or absolute value of z = a+ib and θ = tan−1

(
b
a

)
,

is called the amplitude or argument of z, is the angle that line OP makes with the positive x axis.
It follows that

z = a+ ib = r (cos θ + i sin θ) .
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Chapter 5 : Complex Numbers

Y

X

b

a
P (a, b)

O
θ

r

Figure 5.1: Polar form of a complex number.

which is called the polar form of the complex number, and r and θ are called polar coordinates.

5.3.2 Exponential Form of Complex Number

Definition 5.6 (Euler’s formula)

♣

Euler’s formula is given by,
eiθ = cos θ + i sin θ

.

If z = a+ ib is a complex number, and (r, θ) is the polar form then

z = a+ ib = r(cos θ + i sin θ) = reiθ,

which is the exponential form of z.
Problem 5.1 Find the polar form of −1 + i

√
3.

Solution Amplitude θ = tan−1
(
−
√

3
)

= 2π/3. Modulus r = | − 1 + i
√

3| =
√

1 + 3 = 2. Then
−1 + i

√
3 = 2

(
cos
(

2π
3

)
+ i sin

(
2π
3

))
.

5.4 Operation in Polar Form

Proposition 5.1

♠

If z1 = a1 + ib1 = r1(cos θ1 + i sin θ1), and z2 = a2 + ib2 = r2(cos θ2 + i sin θ2), then

z1z2 = r1r2 {cos(θ1 + θ2) + i sin(θ1 + θ2)} = r1r2e
i(θ1+θ2) (5.1)

z1

z2

=
r1

r2

{cos(θ1 − θ2) + i sin(θ1 − θ2)} =
r1

r2

ei(θ1−θ2) (5.2)
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5.5 De Moivre’s Theorem

Proposition 5.2

♠

If z1, z2 ∈ C, then following properties hold:
1. |z1z2| = |z1||z2|
2.
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2|

Proof Let z1 = r1(cos θ1 + i sin θ1), and z2 = r2(cos θ2 + i sin θ2), then

|z1| = r1, and |z2| = r2.

Again z1z2 = r1r2 {cos(θ1 + θ2) + i sin(θ1 + θ2)}, which provide

|z1z2| = r1r2

√{
cos2(θ1 + θ2) + sin2(θ1 + θ2)

}
= r1r2 = |z1||z2|.

Similarly, can be proved
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| .

5.5 De Moivre’s Theorem

Theorem 5.1 (De Moivre’s Theorem)

♥

De Moivre’s theorem state that

(cos θ + i sin θ)n = cosn θ + i sinn θ,

where n is any integer.

5.5.1 The Roots of Complex Number

If n is a positive integer, using De Moivre’s theorem we have,

z1/n = {r (cos θ + i sin θ)}1/n

= r1/n

{
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)}
. [0 ≤ k < n]

Problem 5.2 Evaluate (−1 + i)
1
3 .

Solution

−1 + i =
√

1 + 1

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
=
√

2

(
cos

(
3π

4
+ 2kπ

)
+ i sin

(
3π

4
+ 2kπ

))
Then

(−1 + i)1/3 =
(√

2
)1/3

(
cos

(
3π + 8kπ

4 · 3

)
+ i sin

(
3π + 8kπ

4 · 3

))
.

For k = 0,
6
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
,

For k = 1,
6
√

2

(
cos

(
11π

12

)
+ i sin

(
11π

12

))
,
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Chapter 5 : Complex Numbers

For k = 2,
6
√

2

(
cos

(
19π

12

)
+ i sin

(
19π

12

))
,

Proposition 5.3

♠
z−1 =

z̄

|z|2
. (5.3)

Proof Let z = a+ ib then

z−1 =
1

a+ ib
=

1

a+ ib

a− ib
a− ib

=
a− ib
a2 − i2b2

=
a− ib
a2 + b2

=
z̄

|z|2
=

z̄

zz̄
.

Problem 5.3 Evaluate
(√

3− i
)− 1

3

Solution Let z =
√

3− i, then

z−1 =
1√

3− i

=
1√

3− i

√
3 + i√
3 + i

=

√
3 + i

3 + 1

=

√
3 + i

4

=

√
4

4
(cos 30◦ + i sin 30◦)

=
1

2
(cos(30◦ + k · 360◦) + i sin(30◦ + k · 360◦))

=⇒ z−1/3 =
1
3
√

2
(cos(30◦ + k · 360◦) + i sin(30◦ + k · 360◦))1/3

=
1
3
√

2
(cos(10◦ + k · 120◦) + i sin(10◦ + k · 120◦))

For k = 0,
z−1/3 =

1
3
√

2
(cos(10◦) + i sin(10◦))

For k = 1,
z−1/3 =

1
3
√

2
(cos(130◦) + i sin(130◦))

For k = 2,
z−1/3 =

1
3
√

2
(cos(250◦) + i sin(250◦))

Alternate solution

Solution Let z =
√

3 − i, then r =
√

3 + 1 = 2, and θ = tan−1
(
−1√

3

)
= tan−1 tan(−30◦) =
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tan−1 tan(330◦) = 330◦.
√

3− i = 2 (cos(330◦) + i sin(330◦))

=⇒
(√

3− i
)−1/3

= (2 (cos(330◦) + i sin(330◦)))−1/3

=
1
3
√

2
(cos(330◦ + k · 360◦) + i sin(330◦ + k · 360◦))−1/3 [0 ≤ k < 3]

=
1
3
√

2
(cos(−110◦ − k · 120◦) + i sin(−110◦ − k · 120◦))

For k = 0,

z−1/3 =
1
3
√

2
(cos(−110◦) + i sin(−110◦)) =

1
3
√

2
(cos(250◦) + i sin(250◦))

For k = 1,

z−1/3 =
1
3
√

2
(cos(−230◦) + i sin(−230◦)) =

1
3
√

2
(cos(130◦) + i sin(130◦))

For k = 2,

z−1/3 =
1
3
√

2
(cos(−350◦) + i sin(−350◦)) =

1
3
√

2
(cos(10◦) + i sin(10◦))

K Chapter 5 Exercisek

1. Define the following
(a). Complex number
(b). Absolute value or modulus a complex number
(c). Argument of a complex number
(d). Conjugate of a complex number
(e). Ordered pair of a complex number
(f). Product of two complex number

2. Write Euler’s formula for complex number.
3. Find the polar form of the following

(a). −1 + i
√

3

(b). −5 + i5

4. Evaluate following
(a).
√
i

(b). (i+ 1)4

(c). (−1 + i)
1
3

(d). (1− i)
1
3

(e). (3− i)−
1
3

5. If z1, z2 are two complex number then show that |z1z2| = |z1||z2|.
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Chapter 6 Analytic Functions

Introduction

h Function of Complex variable
h Limits
h Continuity

h Differentiation
h Cauchy-Reimann
h Harmonic Function

6.1 Function of Complex Variables

Definition 6.1 (Function)

♣

Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each z
in S a complex number w. The number w is called the value of f at z and is denoted by f(z);
that is, w = f(z). The set S is called the domain of definition of f .

Definition 6.2 (Single Valued Function)

♣

The function w = f(z) is called a single valued function if for every value of z there is only one
value of w.

Definition 6.3 (Multi Valued Function)

♣

The function w = f(z) is called a multi valued function if for every value of z there are more
than one value of w.

Example 6.1 The function w = z2 is a single-valued function of z. On the other hand, if w = z
1
2 ,

then to each value of z there are two values of w. Hence, the function

w = z
1
2

is a multiple-valued (in this case two-valued) function of z.

Definition 6.4 (Polynomial)

♣

For an, an−1, . . . , a0 complex constants we define p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0

is a polynomial of degree n, where an 6= 0 and n is a positive integer called the degree of the
polynomial p(z).

Definition 6.5 (Rational Function)

♣

If P (z), and Q(z) are two polynomials then P (z)
Q(z)

is called a rational function, which are defined
at each point z except where Q(z) = 0.



6.2 Limits

6.2 Limits

Definition 6.6

♣

The function f(z) defined in some neighborhood of z0 is said to have a limit w0 at z0 if, for
every given ε > 0, there exists a δ > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ.

Mathematically,
lim
z→z0

f(z) = w0.

6.3 Continuity

Definition 6.7 (Continuity)

♣

A complex valued function f(z) is said to be continuous at a point z0 if for every ε > 0, there
exists a δ > 0 such that

|f(z)− f(z0)| < ε, whenever |z − z0| < δ,

Mathematically,
lim
z→z0

f(z) = f(z0).

Definition 6.8 (Uniform Continuity)

♣

A function f(z) is said to be uniformly continuous on a set S if, for given ε > 0 there exist a
δ > 0 such that

|f(z1)− f(z2)| < ε, whenever |z1 − z2| < δ; ∀z1, z2 ∈ S.

Here δ = δ(ε) and δ is independent of z1 and z2 in S.

6.4 Derivatives

Definition 6.9 (Derivative)

♣

A complex function f(z) is said to be differentiable at z0, if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists and finite. This limit is denoted by f ′(z0) and is called the derivative of f(z) at z0.
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Definition 6.10 (Analytic Function)

♣

A complex function f(z) is said to be analytic at a point z0, if its derivative exist for all z such
that |z − z0| < δ, for some δ > 0, and is said to be analytic in a regionR if it is analytic at each
point of R.

6.4.1 Cauchy-Riemann Equations

Theorem 6.1 (Cauchy-Riemann Equations)

♥

A necessary condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region R is that, in
R, u and v satisfy the Cauchy –Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(6.1)

If the partial derivatives in (6.1) are continuous in R, then the Cauchy –Riemann equations are
sufficient conditions that f(z) be analytic in R.

6.5 Harmonic Functions

Definition 6.11 (Harmonic Function)

♣

A real valued function u(x, y) is said to be harmonic in a region R, if it satisfies the Laplace
equation, i.e.

∂2u

∂x2
+
∂2u

∂y2
= 0.

Definition 6.12 (Harmonic Conjugate)

♣

The function v is said to be a harmonic conjugate of u if u and v are harmonic and satisfies the
Cauchy-Riemann equations.

Theorem 6.2

♥The real and imaginary parts of an analytic function are harmonic function.

Problem 6.1 Find the harmonic conjugate of the function u = ex
2−y2 cos(2xy) and the corresponding

analytic function f(z) = u+ iv.
Solution Given that

u = ex
2−y2 cos(2xy)

then, we have,
∂u

∂x
= 2xex

2−y2 cos(2xy)− 2yex
2−y2 sin(2xy)

= 2ex
2−y2 (x cos(2xy)− y sin(2xy)) (6.2)
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∂u

∂y
= −2yex

2−y2 cos(2xy)− 2xex
2−y2 sin(2xy)

= −2ex
2−y2 (y cos(2xy) + x sin(2xy)) (6.3)

Now putting x = z and y = 0 in (6.2)-(6.3), we get
∂u

∂x
= 2ez

2

(z − 0) = 2zez
2

∂u

∂y
= 2ez

2

(0− 0) = 0

By Milan’s theorem we have

f ′(z) =
∂u

∂x
− i∂u

∂y
= 2zez

2

=⇒ f(z) =

∫
2zez

2

dz =

∫
ez

2

d(z2) = ez
2

+ c

=⇒ u+ iv = e(x+iy)2 + c

= ex
2−y2ei2xy + c

= ex
2−y2 (cos(2xy) + i sin(2xy)) + c1 + ic2 [let c = c1 + ic2]

Equating imaginary parts we have,

v = ex
2−y2 sin(2xy) + c2

and also
f(z) = ex

2−y2 (cos(2xy) + i sin(2xy)) + c.

Problem 6.2 In aerodynamics and fluid mechanics, the function φ andψ in f(z) = φ+ iψ, where f(z)

is analytic, are called the velocity potential and stream function respectively. If φ = x2 +4x−y2 +2y,

1. find ψ
2. find f(z).

Solution Given that
φ = x2 + 4x− y2 + 2y

then, we have,
∂φ

∂x
= 2x+ 4 (6.4)

∂φ

∂y
= −2y + 2 (6.5)

Now putting x = z and y = 0 in (6.2)-(6.3), we get
∂φ

∂x
= 2z + 4

∂φ

∂y
= 2
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By Milan’s theorem we have

f ′(z) =
∂φ

∂x
− i∂φ

∂y
= 2z + 4− i2

=⇒ f(z) =

∫
(2z + 4− i2) dz = z2 + 4z − 2zi+ c

=⇒ φ+ iψ = (x+ iy)2 + 4(x+ iy)− 2i(x+ iy) + c

= (x2 − y2 + 4x+ 2y) + i(2xy − 2x+ 4y) + c1 + ic2 [let c = c1 + ic2]

Equating imaginary parts we have,

ψ = (2xy − 2x+ 4y) + c2

and also
f(z) = (x2 − y2 + 4x+ 2y) + i(2xy − 2x+ 4y) + c.

K Chapter 6 Exercisek

1. Define the following
(a). Continuity for function of a complex variable
(b). Harmonic function
(c). Analytic function

2. State the theorem Cauchy-Riemann equations.
3. Find the harmonic conjugate of the function u = ex

2−y2 cos(2xy) and the corresponding analytic
function f(z) = u+ iv.

4. In aerodynamics and fluid mechanics, the function φ and ψ in f(z) = φ + iψ, where f(z) is
analytic, are called the velocity potential and stream function respectively. If φ = x2 + 4x −
y2 + 2y,
(a). find ψ
(b). find f(z).
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Chapter 7 Complex Integration and Cauchy’s
Integral Formulas

Introduction

h Line Integral of a Complex Function h Cauchy’s Integral Formula

7.1 Some Definition

Definition 7.1 (Closed Curve)

♣If the starting and ending points of a curve coincide then the curve is called a closed curve.

Definition 7.2 (Simple closed curve)

♣A closed curve which does not intersect itself anywhere is called a simple closed curve

Definition 7.3 (Simply connected region)

♣

A region R is called simply connected if any any simple closed curve which lies in R can be
shrunk to a point without leaving R.

Definition 7.4 (Multiply connected region)

♣A region R which is not simply connected is called multiply connected.

Definition 7.5 (Contour)

♣

A contour is either a single point z0 or a finite sequence of directed smooth curves (γ1, γ2, . . . , γn)

such that the terminal point of γk coincides with the initial point of γk+1 for each k = 1, 2, . . . , n−
1. In this case one can write Γ = γ1 + γ2 + · · ·+ γn. If the terminal point of γn coincides with
initial point of γ1 then the contour is said to be the closed contour.

�
Note

1. A single directed smooth curve is a contour with n = 1.
2. In the case of closed contour the integral is written as

∫
C
f(z)dz or

∮
C
f(z)dz.



7.2 Line Integral of a Complex Function

7.2 Line Integral of a Complex Function

Theorem 7.1

♥

If f(z) is analytic in a region R and on its closed boundary C, with derivative f ′(z) which is
continuous at all points inside R and on C then∮

C

f(z)dz = 0.

Theorem 7.2

♥

Let f(z) be analytic in a region bounded by two simple closed curves C1 and C2 (C2 lies inside
C1) and on these curves then ∮

C1

f(z)dz =

∮
C2

f(z)dz

Theorem 7.3 (Cauchy’s integral formula)

♥

Let f(z) be analytic inside and on a simple closed curve C. If a is any point in C, then

f(a) =
1

2πi

∮
C

f(z)

z − a
dz,

or ∮
C

f(z)

z − a
dz = 2πif(a),

where C is traversed in the positive sense.

Proof We know that if f(z) is analytic in a region bounded by two simple closed curves C and C1

(C1 lies inside C) and on these curves then∮
C1

f(z)dz =

∮
C

f(z)dz (7.1)

Here the function f(z)
z−a is analytic inside and on C except at the point z = a.∮

C

f(z)

z − a
dz =

∮
Γ

f(z)

z − a
dz [ By (7.1)] (7.2)

where Γ is a circle with center a and radius r. We have

|z − a| = r

=⇒ z − a = reiθ, [0 ≤ θ ≤ 2π]

=⇒ z = a+ reiθ,

=⇒ dz = 0 + ireiθdθ = ireiθdθ

Putting these values in (7.2), we get∮
C

f(z)

z − a
dz =

∫ 2π

0

f(a+ reiθ)

reiθ
ireiθdθ

= i

∫ 2π

0

f(a+ reiθ)dθ
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Taking limit r → 0 on both sides and making use of the continuity of f(z), we get∮
C

f(z)

z − a
dz = lim

r→0
i

∫ 2π

0

f(a+ reiθ)dθ

= if(a)

∫ 2π

0

dθ = if(a)[θ]2π0 = i2πf(a)

=⇒ f(a) =
1

2πi

∮
C

f(z)

z − a
dz (7.3)

Theorem 7.4 (Liouville’s theorem)

♥

If for all z in the entire complex plane, f(z) is analytic and bounded, then f(z) must be a
constant.

Proof Let a and b any two points in the z plane. Suppose that C is any circle of radius r and center
at a, containing a point b. Then by Cauchy’s integral formula, we have

f(b)− f(a) =
1

2πi

∮
C

f(z)

z − b
dz − 1

2πi

∮
C

f(z)

z − a
dz

=
1

2πi

∮
C

f(z)

(
1

z − b
− 1

z − a

)
dz

=
1

2πi

∮
C

f(z)

(
z − a− z + b

(z − a)(z − b)

)
dz

=
b− a
2πi

∮
C

f(z)

(z − a)(z − b)
dz (7.4)

Now, f(z) is bounded, so there exist a constant M such that |f(z)| ≤M . Also we have, |z − a| = r,

|z − b| = |z − a+ a− b| ≥ |z − a| − |a− b| = r − |a− b|

If we choose r so large such that |a− b| < r/2. Then we have,

|z − b| ≥ r − r/2 = r/2.

Again length of the circle is
∮
C
dz = 2πr. Now from (7.4) we get,

|f(b)− f(a)| =

∣∣∣∣b− a2πi

∮
C

f(z)

(z − a)(z − b)
dz

∣∣∣∣
≤ |b− a|

2π

|f(z)|
|z − a||z − b|

∣∣∣∣∮
C

dz

∣∣∣∣
≤ |b− a|

2π

M

r · r/2
2πr

=
2|b− a|M

r
When r →∞ then

|f(a)− f(b)| = 0

=⇒ f(a)− f(b) = 0

=⇒ f(a) = f(b).

for any arbitrary points a and b in the complex plane.
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K Chapter 7 Exercisek

1. State and prove Cauchy’s integral formula.
2. State and prove Liouville’s theorem.
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Chapter 8 Singularities, Residue and Some
Theorem

Introduction

h Zero or root of an analytic function
h Singularity
h Poles

h Taylor’s theorem
h Laurent’s series
h Cauchy’s Residue theorem

8.1 Zero or root of Analytic Function

Definition 8.1 (Root)

♣

A value of z for which the analytic function f(z) = 0 is called a zero or root of f(z). If
f(z) = (z − z0)ng(z), where g(z) is analytic and g(z) 6= 0 and n is a positive integer, then
z = z0 is called a zero or root of order n of the function f(z).

Definition 8.2 (Simple zero)

♣If f(z) has a zero of order one at z = z0, then f(z) is said to have a simple zero at z = z0.

8.2 Singularity

Definition 8.3 (Singular point or Critical point)

♣A point at which an analytic function f(z) fails to be analytic is called a singular point.

Definition 8.4

♣

If f(z) is analytic everywhere in some region except at an interior point z = a, we call z = a

an isolated singularity of f(z). If the point z = z0 is not an isolated singularity then it is called
a non-isolated singularity.

Definition 8.5 (Pole)

♣

If f(z) = φ(z)
(z−a)n

, φ(a) 6= 0, where φ(z) is analytic everywhere in a region including z = a, and
if n is a positive integer, then f(z) has an isolated singularity at z = a which is called a pole of
order n. If n = 1, the pole is often called a simple pole; if n = 2 it is called a double pole, etc.



8.3 Taylor’s theorem

Definition 8.6 (Removable Singularity)

♣
If lim
z→z0

f(z) exists then z0 is called a removable singualrity of f(z).

Definition 8.7 (Essential singularity)

♣

A singular point which is not a pole, branch point or removable point is called essential
singularity.

Definition 8.8 (Singularity at infinity)

♣The function f(z) has a singularity at z =∞ if w = 0 is a singularity of f( 1
w

).

Definition 8.9 (Entire function)

♣

A function that is analytic everywhere in the finite plane [i.e., everywhere except at∞] is called
an entire function or integral function.

The functions ez, sin z, cos z are entire functions.

Definition 8.10 (Meromorphic function)

♣

A function that is analytic everywhere in the finite plane except at a finite number of poles is
called a meromorphic function.

8.2.1 Rules for poles and singularities

1. If lim
z→z0

f(z) =∞ then z = z0 is a pole of f(z).
If there are only m terms in the negative powers of z− z0 then z = z0 is a pole of order m.

2. If lim
z→z0

exists finitely then z = z0 is a removable singularity.
3. If lim

z→z0
does not exist then z = z0 is an essential singularity.

4. If the principal part of f(z) contains infinite numbers of terms then z = z0 is an isolated essential
singularity.

Problem 8.1 Locate in the finite z plane all the singularities, if any, of each function and name them.

1. z2

(z+1)3
,

2. 1−cos(z)
z

.

Solution

1. z2

(z+1)3
. z − 1 is a pole of order 3.

2. 1−cos(z)
z

. z = 0 is appears to be a singularity. However, since lim
z→z0

1−cos(z)
z

= 0, it is a removable
singularity.
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8.3 Taylor’s theorem

Theorem 8.1 (Taylor’s Theorem)

♥

If f(z) is analytic for all values of z inside a circle C with center at a,

f(z) = f(a) + (z − a)f ′(a) +
(z − a)2

2!
f ′′(a) +

(z − a)3

3!
f ′′′(a) + . . .

8.4 Laurent’s theorem

Theorem 8.2 (Laurent’s Theorem)

♥

If f(z) is analytic inside and on the boundary of the ring shaped region R bounded by two
concentric circles C1 and C2 with center at a and radii r1 and r2 respectively (r2 < r1) then for
all z in R,

f(z) =
∞∑
n=0

an(z − a)n +
∞∑
n=1

a−n
(z − a)n

(8.1)

where

an =
1

2πi

∮
C1

f(w)

(w − a)n+1
n = 0, 1, 2, 3, . . .

a−n =
1

2πi

∮
C2

f(w)

(w − a)−n+1
n = 1, 2, 3, . . . (8.2)

8.5 Residues and Residues Theorem

Definition 8.11 (Residues)

♣

If the function f(z) is analytic within a circle C of radius r and center a, except at z = a, then
the coefficient a−1 of 1

z−a in the Laurent’s expansion [see (8.2)] around z is called the residue
of f(z) at z = a. It is denoted by Res(a) or a−1.

Problem 8.2 Find the Laurent series for z
(z+1)(z+2)

; at z = −1, name the singularity and give the
region of convergence of the series.
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8.6 Evaluation of Definite Integral

Solution Let z + 1 = u. Then
z

(z + 1)(z + 2)
=

u− 1

u(u+ 1)
=
u− 1

u

(
1− u+ u2 − u3 + u4 − . . .

)
= (u− 1)

(
1

u
− 1 + u− u2 + u3 − . . .

)
=

(
1− u+ u2 − u3 + u4 − . . .

)
−
(

1

u
− 1 + u− u2 + u3 − . . .

)
= −1

u
+ 2− 2u+ 2u2 − 2u3 + . . .

= − 1

z + 1
+ 2− 2(z + 1) + 2(z + 1)2 − 2(z + 1)3 + . . .

z = −1 is a pole of order 1, or simple pole. The series convergence for all values of z such that
0 < |z + 1| < 1.
Problem 8.3 Determined the residues of

z2

(z − 2)(z2 + 1)

at all poles.
Solution z = 2, i,−i, are three simple poles of z2

(z−2)(z2+1)
. Then

Residue at z = 2 is
lim
z→2

(z − 2)

(
z2

(z − 2)(z2 + 1)

)
=

4

5
.

Residue at z = i is

lim
z→i

(z − i)
(

z2

(z − 2)(z − i)(z + i)

)
=

i2

(i− 2)2i
=
i(−i− 2)

2
√

1 + 22
=

1− 2i

10
.[see(5.3)]

Residue at z = −i is

lim
z→−i

(z + i)

(
z2

(z − 2)(z − i)(z + i)

)
=

i2

(−i− 2)(−2i)
=

i

(2 + i)(2)
=

i(2− i)
2
√

1 + 22
=

1 + 2i

10
.

Theorem 8.3 (Cauchy’s Residue Theorem)

♥

If f(z) is analytic inside and on a simple closed curve C except at a finite number of points a,
b, c, . . . inside C at which the residues are a−1, b−1, c−1, . . . respectively, then∮

C

f(z)dz = 2πi (a−1 + b−1 + c−1 + . . . ) = 2πi(Sum of residues)

8.6 Evaluation of Definite Integral

Problem 8.4 Evaluate ∮
C

ezdz

(z − 1) (z + 3)2 ,

where C is given by |z| = 3/2.
Solution Since |z| = 3/2 encloses only the simple pole at z = 1, residue at simple pole z = 1 is

lim
z→1

(
(z − 1)

ez

(z − 1)(z + 3)2

)
= lim

z→1

ez

(z + 3)2
=

e

16
.
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The required integral = 2πi
(
e
16

)
= iπe

8
.

Problem 8.5 Show that
2π∫

0

dθ

5 + 3 sin θ
=
π

2
.

Solution Let z = eiθ then sin θ = eiθ−e−iθ
2i

= z−z−1

2i
and dz = ieiθdθ = izdθ. Then we have

2π∫
0

dθ

5 + 3 sin θ
=

∮
C

1

5 + 3
(
z−z−1

2i

) dz
iz

=

∮
C

1

5 + 3
(
z−z−1

2i

) dz
iz

=

∮
C

2

3z2 + 10iz − 3
dz

Where C is the circle of unite radius with center at the origin. The poles of 2
3z2+10iz−3

are the simple
poles

z =
−10i±

√
−100 + 36

6
=
−10i± 8i

6
= −3i,−i/3.

only −i/3 lies inside C.

Residue at −i/3 is

lim
z→−i/3

(
z +

i

3

)(
2

3z2 + 10iz − 3

)
= lim

z→−i/3

2

3(z + 3i)
=

2

3(−i/3 + 3i)
=

2

8i
=

1

4i
.

Then
2π∫

0

dθ

5 + 3 sin θ
= 2πi

(
1

4i

)
=
π

2
.

Problem 8.6 Show that
2π∫

0

cos 3θ

5− 4 cos θ
dθ =

π

12
.

Solution
2π∫

0

cos 3θ

5− 4 cos θ
dθ (8.3)

Let z = eiθ then cos θ = eiθ+e−iθ

2
= z+z−1

2
. We also have

cos 3θ =
e3iθ + e−3iθ

2
=
z3 + z−3

2
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and dz = izdθ. Then
2π∫

0

cos 3θ

5− 4 cos θ
dθ =

∮
C

z3+z−3

2

5− 4
(
z+z−1

2

) dz
iz

=
1

2i

∮
C

z−3(z6 + 1)

5z − (2z2 + 2)
dz

= − 1

2i

∮
C

z6 + 1

z3 (2z2 − 5z + 2)
dz

= − 1

2i

∮
C

z6 + 1

z3 (2z − 1) (z − 2)
dz

Where C is the circle of unite radius with center at the origin. The integrand has a pole of order 3 at
z = 0 and a simple pole z = 1

2
within C.

Residue at z = 0 is

lim
z→0

1

2!

d2

dz2

(
z3 z6 + 1

z3 (2z − 1) (z − 2)

)
= lim

z→0

1

2!

d2

dz2

(
z6 + 1

(2z − 1) (z − 2)

)
(8.4)

Let u = z6 + 1 and v = 2z2 − 5z + 2 = (2z − 1)(z − 2)then we have

u(0) = 1; u′(z) = 6z5; u′(0) = 0; u′′(z) = 30z4; u′′(0) = 0.

v(0) = 2; v′(z) = 4z − 5; v′(0) = −5; v′′(z) = 4; v′′(0) = 4.

Also we have, (u
v

)′
=

(
u′v − uv′

v2

)
=⇒

(u
v

)′′
=

(
u′v − uv′

v2

)′
=

(u′′v − uv′′) v2 − 2 (u′v − uv′) vv′

v4

=
u′′v − uv′′

v2
− 2 (u′v − uv′) v′

v3
(8.5)

Now we can find(u
v

)′′
(0) =

0 · 2− 1 · 4
4

− 2 (0 · 2− 1 · (−5)) (−5)

8
=
−4 + 25

4
=

21

4
Using this value in (8.4) we have residue at z = 0 is 21

2·4 = 21
8

.

Residue at z = 1/2 is

lim
z→1/2

(z − 1

2
)

z6 + 1

z3 (2z − 1) (z − 2)

= lim
z→1/2

z6 + 1

2z3 (z − 2)

=
(1/2)6 + 1

2(1/2)3 ((1/2)− 2)

= −65/64

3/8
= −65

24
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Then
− 1

2i

∮
C

z6 + 1

z3 (2z − 1) (z − 2)
dz = − 1

2i
(2πi)

(
21

8
− 65

24

)
=

π

12
.

Problem 8.7 Evaluate ∫ ∞
0

dx

x4 + 1
.

Solution Consider
∮
C

dz
z4+1

, where C is the closed contour consisting of the line from −R to R and

O

Γ

XX ′ R−R

Y

the semi-circle Γ, traverse clockwise.

Since z4 + 1 = 0, when z = eiπ/4, ei3π/4, ei5π/4, ei7π/4, these are simple poles of 1/(z4 + 1). Only
the poles eiπ/4 and ei3π/4 lie within C. Then L’Hospital’s rule,

Residue at eiπ/4 is

lim
z→eiπ/4

[
z − eiπ/4 1

z4 + 1

]
= lim

z→eiπ/4

1

4z3
=

1

4
e−i3π/4.

Residue at ei3π/4 is

lim
z→ei3π/4

[
z − ei3π/4 1

z4 + 1

]
= lim

z→ei3π/4

1

4z3
=

1

4
e−i9π/4.

Thus ∮
C

dz

z4 + 1
= 2iπ

(
1

4
e−i3π/4 +

1

4
e−i9π/4

)
=

iπ

2

(
cos

(
3π

4

)
− i sin

(
3π

4

)
+ cos

(
9π

4

)
− i sin

(
9π

4

))
=

iπ

2

(
− cos

(π
4

)
− i sin

(π
4

)
+ cos

(π
4

)
− i sin

(π
4

))
=
−i2π

2

(
2 sin

(π
4

))
=
π
√

2

2

=⇒
∫ R

−R

dx

x4 + 1
+

∫
Γ

dz

z4 + 1
=

π
√

2

2

Now taking the limit on both side

lim
R→∞

∫ R

−R

dx

x4 + 1
+ lim

R→∞

∫
Γ

dz

z4 + 1
=
π
√

2

2
(8.6)
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Chapter 8 Exercise

Let z = Reiθ, and R→∞ then∣∣∣∣ 1

R4ei4θ + 1

∣∣∣∣ ≤ 1

|R4ei4θ| − 1
=

1

R4 − 1
≤ 2

R4

=⇒ lim
R→∞

∣∣∣∣ 1

z4 + 1

∣∣∣∣ = lim
R→∞

∣∣∣∣ 1

R4ei4θ + 1

∣∣∣∣ = 0

=⇒ lim
R→∞

∫
Γ

dz

z4 + 1
= 0. (8.7)

Using (8.7) in (8.6) we have, ∫ ∞
−∞

dx

x4 + 1
=

π
√

2

2

2

∫ ∞
0

dx

x4 + 1
=

π
√

2

2∫ ∞
0

dx

x4 + 1
=

π
√

2

4

K Chapter 8 Exercisek

1. Define Poles with an example.
2. Locate in the finite z plane all the singularities, if any, of each function and name them.

(a).
z2

(z + 1)3 ,

(b).
1− cos(z)

z
.

3. Define Taylor’s series.
4. When a sequence is convergent or divergent?
5. Define Laurent’s series?
6. Find the Laurent series about the indicated singularity for z

(z+1)(z+2)
; at z = −1, name the

singularity and give the region of convergence of the series.
7. Determined the residues of

z2

(z − 2)(z2 + 1)

at z = 2, i,−i.
8. Show that

2π∫
0

cos 3θ

5− 4 cos θ
dθ =

π

12
.

9. Evaluate ∮
C

ezdz

(z − 1) (z + 3)2 ,

where C is given by |z| = 3/2.
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10. Show that
2π∫

0

dθ

5 + 3 sin θ
=
π

2
.

11. Evaluate ∫ ∞
0

dx

x4 + 1
.
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